
UNIT – I 
 Resonance 

Objectives:   

 To understand the concepts of Resonance, Bandwidth and Quality factor. 
 To evaluate Resonance, Bandwidth and Quality factor for various series 

parallel combinations of R, L, C. 

Syllabus: 

Resonance - series, parallel circuits, concept of band width and Q factor. 
 

Outcomes: 

On completion the student should be able to:  
 understand the concept of electrical resonance, Bandwidth and Quality 

factor 

 Evaluate resonant frequency, Bandwidth and Quality factor for various 

series and parallel RLC circuits. 
 

Resonance: 

 Resonance is a particular type of phenomenon inherently found normally 

in every kind of system, Electrical, Mechanical, Optical, Acoustical and even 

Atomic. Usually resonance occurs in any of these systems, when energy storage 
elements interchange exactly equal amounts of energy. Resonance cannot take 

place when only one type of energy storing element is present such as an 

inductance or a mass. There must exist two types of independent energy 
storing elements capable of interchanging energy between one another, i.e., 

inductance and capacitance in electrical systems and mass and a spring in 

mechanical systems. 

 There are several definitions of resonance. But, the most frequently used 

definition of resonance in electrical systems is the steady state operation of a 

circuit or system at that frequency for which the resultant response is in time 
with the exciting function, despite the presence of energy storing elements. 

Resonance is a phenomenon which enables us to discriminate between 

different frequencies. Using resonant circuits, it is possible to select a 
particular frequency from a band of frequencies. 

Series Resonance 

 A circuit is said to be under resonance, when the applied voltage V and 
the resulting current I are in phase. Thus a series RLC circuit, under 

resonance behaves like a pure resistance network and the net reactance of the 

circuit should be zero. Since V and I are in phase, the p.f. is unity at 
resonance. 

 Consider the series RLC circuits shown in figure 1.1. 



 

Figure 1.1 

 The complex impedance of the circuit is 

    Z = R + j(XL − XC) ⟹ Z = R + j {ωL − (
1

ωC
)}  

 The absolute value of impedance is 

     Z = √R2 + (XL − XC)2  

 Under resonance, the circuit should be purely resistive, i.e., net 

reactance should be zero. 

    X = XL − XC = ωL − (
1

ωC
) = 0 ⟹ ωL =

1

ωC
  

    ω = (
1

√LC
) or f = (

1

2π√LC
) ⟹ ω0 = 2πf0 = (

1

√LC
)   

is called the natural frequency of the circuit. 

We can obtain resonance by changing the frequency of the applied voltage. 

When it is equal to f =
1

2π√LC
, i.e., the natural frequency of the circuit, it is under 

resonance and this frequency called resonant frequency. Resonance can also 
be obtained by varying L or C. The general considerations at resonance are the 
same regardless of which parameter is varied to produce resonance. 

Behaviour of RLC series circuit under Variable Frequency 

From equation Z = R + j {ωL − (
1

ωC
)}  we see that only imaginary part of the 

impedance is a function of frequency. The components of Z, R, XL and XC, how 
they vary with frequency are shown in figure 1.2. 



 

Figure 1.2 

1. Resistance R is independent of frequency. 

2. Inductive reactance 𝐗𝐋  directly proportional to frequency and is 

positive. 

3. Capacitive reactance 𝐗𝐂  Inversely proportional to frequency and is 

negative. 

4. Net reactance 𝐗 = 𝐗𝐋 − 𝐗𝐂 It will be initially negative and becomes zero 
and then it is positive. 

i.e.  for f < f0, it is capacitive 

   for  f = f0, it is zero 

   for  f > f0, it is inductive. 

When,  XL = XC the circuit is said to be under resonance. 

5. Impedance (Z) 

|Z| = √R2 + (XL − XC)2 

At resonance, XL − XC = 0 , hence Z = R . At any other frequency, (XL −
XC) ≠ 0 and hence |Z| > 𝑅. 

Hence, impedance at resonance is minimum and it is equal to R. The 

circuit behaves as capacitive circuit below f0 and inductive circuit f0. 

Current at Resonance 

The current=
Voltage

Impedance
=

V

√R2+(XL−XC)2
 since the impedance is minimum and equal 

to R at resonance, the current is maximum and equal to (
V

R
) and in phase with 

V (power factor is unity). It varies inversely as impedance Z. The variation of 
current with frequency is shown in fig 1.3. 

Imax =
V

R
 



 

Figure 1.3 

With all parameters being same, if R is varied the current at resonance will 

change but resonance frequency is independent of R. The shape of current 

variation becomes flat as resistance is increased. 

Since current is maximum at resonance, voltage across resistance, VR = IR will 
also be maximum and equal to applied voltage. 

Voltage across Elements R, L and C 

Voltage across resistance R=IR is maximum at resonance and equal to voltage 

applied to the series circuit. 

Voltage across inductive reactance = IXL. 

Both I and XL are increasing before resonance and the product must be 

increasing. At resonance, I is not changing but XL is increasing and hence the 

product should be increasing, the voltage across inductor continues to increase 

until the reduction in current offsets the increase in XL. 

 IXL is maximum after f0. 

 In the case of voltage across capacitor VC = IXC . At resonance, I is 

constant and XC is decreasing. Therefore, the product should be decreasing. 

Hence IXC  should have been maximum before resonance frequency f0 . The 

variation of voltage VR, VL and VC are shown in figure 1.4. 

 

Figure 1.4 



Frequency at which 𝐕𝐋 is maximum 

 We know that 

VL = IXL =
VωL

√R2 + (ωL −
1

ωC)
2
 

VL
2 =

V2ω2L2

R2 + (ωL −
1

ωC)
2 =

V2ω4L2C2

ω2C2R2 + (ωL2C − 1)2
 

To determine frequency at which VL is maximum, we will equate 
d(VL

2)

dω
= 0 

4ω3V2L2C2[ω2C2R2 + (ω2LC − 1)2] − V2ω4L2C2[2ωC2R2 + 2(ω2LC − 1)2ωLC]

[ω2C2R2 + (ω2LC − 1)2]2
= 0 

4ω3V2L2C2[ω2C2R2 + (ω2LC − 1)2] − V2ω4L2C2[2ωC2R2 + 2(ω2LC − 1)2ωLC] = 0 

2[ω2C2R2 + (ω2LC − 1)2] − ω[ωC2R2 + 2ωLC(ω2LC − 1)] = 0 

2ω2C2R2 + 2(ω2LC − 1)2 − ω2C2R2 − 2ω2LC(ω2LC − 1) = 0 

ω2C2R2 + (ω2LC − 1)[2(ω2LC − 1) − 2ω2LC] = 0 

ω2C2R2 − 2ω2LC + 2 = 0 

ω2[2LC − C2R2] = 2 

ω =
1

√LC −
C2R2

2

 

f =
1

2π√LC −
C2R2

2

 

Frequency at which 𝐕𝐂 is maximum 

We know that 

VC = IXC =
V

√(ωL −
1

ωC)
2

1

ωC
 

VC
2 =

V2

ω2C2R2 + (ω2LC − 1)2
 

To determine the frequency at which VC is maximum we will equate 
d(VC

2)

dω
= 0 

−V2[2ωC2R2 + 2(ω2LC − 1)2ωLC]

[ω2C2R2 + (ω2LC − 1)2]2
= 0 

[2ωC2R2 + 2(ω2LC − 1)2ωLC] = 0 

[2ωC2R2 + 4ωLC(ω2LC − 1)] = 0 

2ωC[CR2 + 2L(ω2LC − 1)] = 0 



CR2 + 2L2ω2C − 2L = 0 

2L2ω2C = 2L − CR2 

ω2 =
2L − CR2

2L2C
=

1

LC
−

R2

2L2
 

ω = √
1

LC
−

R2

2L2 or  f =
1

2π
√

1

LC
−

R2

2L2 

At resonance the conditions are 

1. Circuit is purely resistive 

2. Power factor of the circuit is unity 

3. Current is maximum and is equal to 
V

R
 

4. Voltage across L= Voltage  across C 

5. The p.f of the circuit changes from leading to lagging with increase in 

frequency. 

Series RLC circuit as a frequency selector 

 Any series RLC circuit passes all waves of finite frequency to some extent 

but it will offer lowest impedance at resonant frequency i.e., it allows 
frequencies near the resonant frequency more rapidly than other frequencies. 

Here, a series RLC circuit posses the frequency selectivity, i.e., the ability to 

discriminate among waves of different frequencies. The band of frequencies 
which is passes quite readily through the circuit is called Pass band or Band 

width of the circuit. 

Bandwidth or Pass band It is arbitrarily considered to be the range of 

frequencies over which the current is equal to the greater than 
1

√2
 times the 

current at resonance (=
V

R
). 

 It is customary to specify two frequencies f1 and f2 at which the current 

is reduced to (
V

√2R
) as shown in figure 1.5. 

 

Figure 1.5 



 Within this range of frequencies the power dissipation is equal to or 

greater than 
V2

2R
, i.e., half of the maximum power at resonance, 

V2

R
 and hence the 

frequencies f1 and f2  are called lower and upper half power frequencies. The 

frequency range f2 − f1 is called Bandwidth or Pass band. 

Bandwidth = f2 − f1 

Determination of Bandwidth 

Current at resonance = 
V

R
 

Impedance at resonance = R 

Current at half power frequencies f1 and f2 is 
1

√2
 times the current at resonance 

      I = (
1

√2
) (

V

R
)  

Therefore, impedance Z at half power frequencies 

      = √2R  

     Z = √R2 + X2 = √2R  

Squaring,  R2 + X2 = 2R2 ⟹ X2 = R2  ⟹X = R  

Hence, at frequencies f1 and f2 the net reactance is equal to the resistance, i.e., 

X = R. The phase angle at these frequencies will be 450 and hence power factor 

is 0.707. 

At lower half power frequency, f1, XC > XL, hence, the net reactance 

    X = (
1

ω1C
) − ω1L = R  

    1 − ω1
2LC = ω1CR  

Therefore, 

   ω1
2LC + ω1CR − 1 = 0 ⟹ ω1

2 + ω1 (
R

L
) − (

1

LC
) = 0  

     ω1 = − (
R

2L
) ± √(

R

2L
)

2

+ (
1

LC
)  

At upper half frequency, f2, XL > XC, hence 

    X = ω2L − (
1

ω2C
) = R  

  ω2
2LC − 1 = ω2CR ⟹  ω2

2 − ω2 (
R

L
) − (

1

LC
) = 0  

     ω2 = (
R

2L
) ± √(

R

2L
)

2

+ (
1

LC
)  

 Therefore, bandwidth= ω2 − ω1 =
R

L
 ⟹  f2 − f1 =

R

2πL
 

 

 

 



Quantity Factor (Q-Factor) 

 The quantity of series resonant circuit depends on the sharpness of the 

current variation with frequency (current response). Smaller the value of 

resistance R compared to XL and XC, sharper will be the response. To introduce 
a quantitative measure for the quality of the resonant circuit, quality factor is 

defined as 

     Q − factor =
ω0L

R
=

1

ω0CR
  

      =
XL0

R
=

XC0

R
  

=
Inductive or capacitive reactance at resonance

Resistance
 

 It can also defined as the ratio of voltage across inductor or capacitor at 

resonance to the supply voltage 

     Q − factor = (
VL

V
) = (

VC

V
)  

Since  VL = ω0LI 

and   V=IR 

     Q − factor =
VL

V
=

ω0LI

RI
=

ω0L

R
  

Another form of quality factor in terms of energy is defined as 

Q = 2π (
Maximum energy stored

Energy dissipated per cycle
) 

The maximum energy stored in inductor at resonance is 

      WL = (
1

2
) LIm

2  

Power dissipated at resonance 

      P0 =
Im

2R

2
  

Power dissipation per cycle =
P0

f0
 

   Q =
[2π(

1

2
)LIm

2]

[
Im

2R

2f0
]

= 2π (
1

2
) LIm

2.
2f0

Im
2R

=
2πf0L

R
=

ω0L

R
  

Selectivity 

The ratio of bandwidth to resonance frequency is defined as selectivity of the 

circuit 

  Selectivity =
BW

f0
=

f2−f1

f0
=

R

2πL
1

2π√LC

=
R

L
√LC = R√

C

L
= √

CR2

L
  

Parallel Resonance 

The general definition of resonance that the circuit containing energy storage 

elements (L and C) behaves as a pure resistive network at resonance and the 



applied voltage and resulting current are in phase, is also applicable to parallel 
resonance. At resonance, in a parallel circuit, the net susceptance must be 

zero. In analyzing series circuit we have employed impedance concept and for 

parallel circuit admittance concept is more convenient. First we consider a 
parallel circuit with ideal elements (R, L and C) in each branch and then extend 

the conditions to a general circuit. 

Parallel resonance in pure RLC circuits 

 Let us consider a parallel circuit in which each branch consists of single 

ideal element (R, L and C) as shown in figure 1.6 as 

   
Figure 1.6 

 

The admittances of each branch (reciprocal of impedances) are 

      Y1 =
1

R
= G  

     Y2 =
1

jXL
= −jBL = −j

1

ωL
  

     Y3 =
1

jXC
= jB = jωC  

 

The total admittance of the circuit is 

    Y = Y1 + Y2 + Y3 = G + j(BC − BL)  

The condition for resonance is that net susceptance should be zero 

BC − BL = 0 ⟹  BC = BL 

      ωC =
1

ωL
  

The frequency at resonance is 

ωr =
1

√LC
 ⟹ fr =

1

2π√LC
 

 The absolute value of total admittance is |Y| = √G2 + (BC − BL)2. At f = fr, total 

admittance |Y| = G only. Since net susceptance is zero it is also minimum, the 

p.f is unity. At f > 𝑓r the net susceptance is capacitive and hence the p.f of the 

circuit is leading. The effect of variation of frequency on conductance, 
susceptance and admittance are shown in figure 1.6 b). 

 



Variation of Total current 

      I =
V

Z
VY  

 Since admittance is minimum at resonance, the current is also 

minimum. The variation of total current with frequency is same as the 
variation of admittance and is shown in figure 1.7. Sometimes a parallel 

resonance circuit is called anti resonant circuit since current is minimum. 

 Current at resonance I0 = VG 

 

Figure 1.7 

 

Conditions at Resonance in parallel circuits 

1. The inductive and capacitive susceptance are equal 

2. Net susceptance is zero 

3. Admittance is minimum and equal to conductance 

4. The current is minimum and is equal to VG 

5. The V and I are in phase and power factor is unity. 

But in practice it is not necessary to have a separate resistance branch, 

because the inductive and capacitance are always associated with small 
resistances. 

Practical two branch resonant circuit 

 In a practical resonant circuit shown in figure 1.8 a) and inductance and 
capacitance elements are connected in parallel and having resistance 

associated with them. The phasor diagram showing the applied voltage, branch 

currents and total current are shown in figure 4.13 b) at resonance condition. 

 

Figure 1.8 



In order that the above circuit is under resonance, the total current should be 
in phase with the applied voltage, i.e. it should behave as a pure resistive 

circuit. In order that the total current is in phase with applied voltage the net 

reactive component of current should be zero. 

i.e.,   𝐼𝐿 sin ϕ𝐿 = 𝐼𝐶 sin 𝜙𝐶 

    
𝑉

√RL
2+XL

2

XL

√RL
2+XL

2
=

𝑉

√RC
2+XC

2

XC

√RC
2+XC

2
  

     
XL

RL
2+XL

2 =
XC

RC
2+XC

2  

i.e., Inductive susceptance = Capacitive susceptance 

Net susceptance is zero. Hence the admittance at resonance is pure 
conductance and is equal to 

    𝑌 =
RL

RL
2+XL

2 +
RC

RC
2+XC

2  

The condition for resonance is 

XL

RL
2+XL

2 =
XC

RC
2+XC

2 ⟹
𝜔𝑟𝐿

RL
2+ωr

2L2 =

1

𝜔𝑟𝐶

(RC
2+

1

ωr
2C2)

    

Cross multiplying 

    ωr
2LC (RC

2 +
1

ωr
2C2) = RL

2 + ωr
2L2  

     ωr
2LC [RC

2 −
L

C
] = RL

2 −
L

C
  

     ωr =
1

√LC
[√

RL
2−

L

C

RC
2−

L

C

]

1
2⁄

  

 

 

Resonance frequency 

     fr =
ωr

2π
=

1

2π√LC
[√

RL
2−

L

C

RC
2−

L

C

]

1
2⁄

  

Since the resonance frequency fr must be a real value, it is necessary that both 

the quantities (RL
2 −

L

C
) and (RC

2 −
L

C
) should be of the same sign (either +ve or -

ve). If this is not satisfied resonance will not occur. 

Since the circuit behaves as a pure conductance and hence the current at 

resonance is 

    𝐼0 = 𝑉𝐺 = 𝑉 [
RL

RL
2+XL

2 +
RC

RC
2+XC

2]  

Usually the resistance associated with capacitance is small and considering an 

ideal capacitor i.e. RC = 0, then 



 Resonance frequency,  fr =
1

2π√LC
[√

RL
2−

L

C

−
L

C

]

1
2⁄

   

     fr =
1

2π
√ 1

LC
− (

RL
2

L2 )  

 Current at resonance 𝐼0 =
𝑉RL

RL
2+XL

2 

 Impedance at resonance  =
RL

2+XL
2

RL
=

RL
2+ωr

2L2

RL
 = RL +

L

CRL
− RL =

L

CRL
 

The impedance at resonance 
L

CRL
 is called dynamic resistance or effective 

resistance of the circuit. 

Resonance can also be obtained by varying different parameters in the above 

circuit. 

Resonance by varying L and keeping all other parameters constant 

In the parallel circuit shown in fig 1.8 a), we would like to get resonance at 𝜔 =
𝜔𝑟 by varying only XL. The conditions for resonance is 

     
XL

RL
2+XL

2 =
XC

RC
2+XC

2  

 Cross multiplying we will get 

    XL(RC
2 + XC

2) = XC(RL
2 + XL

2)  

 The above equation is written as a quadratic equation in the variable XL 

    XCXL
2 − XL(RC

2 + XC
2) + XCRL

2 = 0  

 Solving for XL 

    XL = ωrL =
[(RC

2+XC
2)±√(RC

2+XC
2)

2
−4XC

2RL
2]

2XC
  

     ωrL =
ZC

2±√ZC
4−4XC

2RL
2

2XC
  

     ωrL =
ZC

2±√ZC
4−4XC

2RL
2

2

ωrC

  

    L =
C

2
[ZC

2 ± √ZC
4 − 4XC

2RL
2]  

In similar way, resonance can be obtained by varying by varying C (or XC), RL or 

RC in the above circuit. The corresponding values ofXC,RL or RC can be obtained 

from equationXL(RC
2 + XC

2) = XC(RL
2 + XL

2). 

 

The value of C at resonance  𝐶 =
2𝐿

(ZL
2±√ZL

4−4RC
2XL

2)

  

Where      ZL = √RL
2 + XL

2 



The value of RL at resonance  RL = √ωr
2 + LCRC

2 − ωr
2L2 +

L

C
  

The value of RL at resonance  RC = √
RL

2

ωr
2LC

+
L

C
−

1

ωr
2C2  

Resonance at all Frequencies 

 Now, we would like to obtain the condition so that the two branch 

parallel circuit resonates at all frequencies. The condition for resonance is 

      
XL

RL
2+XL

2 =
XC

RC
2+XC

2  

      
𝜔𝐿

RL
2+𝜔2𝐿2 =

ωC

1+ω2C2RC
2  

      
1

(
RL

2

L
)+𝜔2𝐿

=
1

1

C
+ω2CRC

2  

 In order that the above equation is independent of ω we must have 

      
RL

2

L
=

1

C
 i. e. , RL

2 =
L

C
  

      L = CRC
2RC

2 =
L

C
  

Hence the condition for resonance at all frequencies is 

      RL
2 = RC

2 =
L

C
  

 

Q-Factor of Resonant Circuit 

 The parallel circuit behaves as a pure conductance at resonance and has 

minimum admittance maximum impedance. The circuit offers very high 
impedance for frequencies near resonance and hence does not allow these 

frequencies readily than other frequencies, i.e., the circuit will reject the 

frequencies near the resonant frequency and hence this resonance is called 
Rejector resonance. 

 In this circuit, at resonance total current I is minimum and the branch 

current 𝐼𝐿 and 𝐼𝐶 will equal and much greater than the total current. 

 The ratio of 
𝐼𝐿  or 𝐼𝐶

𝐼
 at resonance is called current magnification. 

 The above ratio also represents quality factor or Q-factor. 

 The quality factor is also given by 
𝐵𝐿  or 𝐵𝐶

𝐺
 at resonance 

Q − factor =
𝐵𝐿 or 𝐵𝐶

𝐺
    𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 

 

 

 
 

RL = RC = √
L

C
 

  



UNIT - II 

Balanced Three Phase circuits 

Objectives:   

 To introduce the concept of three phase electrical supply. 

 To analyze three phase balanced systems 

 To Measure three phase active and reactive power. 

Syllabus: 

Phase sequence-Star and Delta connection-Relation between line and phase 

voltages and currents in balanced systems-Analysis of balanced three phase 

circuits-Analysis -Star Delta transformation Technique-Measurement of Active 

and Reactive power in balanced three phase systems-Two wattmeter method of 

measurement of three phase power. 

Outcomes: 

On completion the student should be able to:  

 Describe the reasons for, and the generation of the three-phase supply. 
 Distinguish between star (3 and 4-wire) and delta connections.  

 State the relative advantages of three-phase systems compared with single-

phase-systems.  
 Solve three-phase circuits in terms of phase and line quantities, and the 

power developed in three-phase balanced loads.  

 Measure power dissipation in balanced three-phase loads, using the 1, 2 
and 3-wattmeter methods, and hence determine load power factor.  

 

1.1 Introduction: 

There are two types of systems available in electrical circuits, single 

phase and three phases. In single phase circuits, there will be only one phase, 

i.e the current will flow through only one wire and there will be one return path 

called neutral line to complete the circuit.  

 In 1882, new invention has been done called polyphase system, that more 

than one phase can be used for generating, transmitting and for load 

system.  

 Three phase circuit is the polyphase system where three phases are sent 

together from generator to the load.  



 Each phase are having a phase difference of 1200, i.e 1200 angle 

electrically. So from the total of 3600, three phases are equally divided into 

1200 each.  

 The sinusoidal waves for 3 phase system are shown below. 

 

Fig.1.1 Three Phase Voltages 

 The three phase can be used as three individual single phases. So if the 

load is single phase, then one phase can be taken from the three phase 

circuit and the neutral can be used as ground to complete the circuit. 

1.1.1 Why three phase is preferred over single phase? 

 There are number of advantages over single phase circuit.  

 The three phase system can be used as three single phase line so it can 

act as three single phase system.  

 The three phase generation and single phase generation is same in the 

generator except the arrangement of coil in the generator to get 1200 

phase difference.  

 The conductor needed in three phase circuit is 75% that of conductor 

needed in single phase circuit. 

A 3-phase system has the following advantages over single phase system.  

 For a given frame size of a machine a 3-phase machine will have large 

capacity than a single phase machine.  

 The torque produced in a 3-phase motor will be more uniform where as 

in a 1-phase motor it is pulsating.  

 The amount of copper required in a certain amount of power over a 

particular distance, is less compared to a single phase system. 

 



1.1.2 Phase sequence: 

 It is the order in which the phase voltages will attain their maximum 

values.  

 From the fig 1.1 it is seen that the voltage in R phase will attain 

maximum value first and followed by Y and B phases. Hence three phase 

sequence is RYB.  

 This is also evident from phasor diagram in which the phasors with its 

positive direction of anti-clockwise rotation passes a fixed point is the 

order RYB, YBR and so on.  

 The phase sequence depends on the direction of rotation of the coils in 

the magnetic field. 

  If the coils rotate in the opposite direction then the phase voltages 

attains maximum value in the order RBY. The phase sequence gets 

reversed with direction of rotation.  

 

Fig.1.2 Phasor Representation of Three Phase Voltages 

Then the voltage for this sequence can be represented as 

𝑣𝑅 = 𝑣𝑚𝑠𝑖𝑛 𝜔𝑡 

𝑣𝑌 = 𝑣𝑚sin ( 𝜔𝑡 − 1200) 

𝑣𝐵 = 𝑣𝑚 sin( 𝜔𝑡 − 2400) = 𝑣𝑚sin ( 𝜔𝑡+1200) 

The RMS values of voltage can be expressed as 

𝑉𝑅 = 𝑉𝑚∠00 

𝑉𝑌 = 𝑉𝑚∠ − 1200 

𝑉𝐵 = 𝑉𝑚∠ − 2400 = 𝑉𝑚∠ + 1200 

1.1.3 Star and Delta connection 

 The three phase windings have six terminals i.e., R,Y,B are starting end 

of the windings and R',Y' and B' are finishing ends of windings.  

 For 3 phase systems two types of common interconnections are 

employed. 

 



1.1.3(a) Star connection:  

 The finishing ends or starting ends of the three phase windings are 

connected to a common point as shown in. R', Y', B' are connected to a 

common point called neutral point.  

 The other ends R, Y, B are called line terminals and the common 

terminal neutral are brought outside.  

 Then it is called a 3 phase 4 wire star connected system. 

  If neutral point is not available, then it is called 3 phase 3 wire star 

connection.  

 

Fig.1.3 Star Connection 

1.1.3(b) Delta connection:  

 Here the dissimilar ends of the three coils i.e R and Y', Y and B', and B 

and R' are connected to form a closed Δ circuit (starting end of one phase 

is connected to finishing end of the next phase).  

 The three ends are brought outside as line terminal R, Y, B. Three phase 

windings are connected in series and form a closed path.  

 The sum of the voltages in the closed path for balanced system of 

voltages at any instant will be zero. 

 



Fig.1.4 Delta Connection 

 The main advantage of star connection is that we can have two different 

3-phase voltages.  

 The voltages between R & Y, Y & B, and B & R are called line voltages 

and form a balanced three phase voltage. 

  The voltages between the terminals R & N, Y & N, and B & N are called 

phase voltage and form another balanced three phase voltage (line to 

neutral voltage or wye voltage). 

1.2 Relation between line and phase voltage and currents in balanced 

systems:  

In this section we will derive the relation between line and phase values 

of voltages and currents of 3-phase star connected and delta connected 

systems. 

1.2.1 Star connection: 

 Here, we employ double subscript notation to represent voltages and 

currents. 

  The terminal corresponding to first subscript is assumed to be at a higher 

potential with respect to the terminal corresponding to second subscript. 

 

Fig.1.5 Star Connected Syatem 

 The voltage across each coil, i.e., the voltage between R & R', Y & Y', and B & 

B' are called phase voltages(acting from finishing end to starting end). 

 VRR’ ,  VYY’ , VBB’ or VRN, VYN, VBN represent phase voltages. 

 The voltages across line terminals R & Y, Y & B, B & R are called line 

voltages.  

 The connection diagram and the corresponding phasor diagram of voltages is 

shown in fig. 



 From the star connected 3 phase system, it is clearly observed that whatever 

currents flow through the lines R, Y, B also flow through the respective 

phase windings. 

 Hence in star connected system, the phase currents and line currents are 

identical. 

Phase current (Iph) = Line currents (IL) 

Iph= ILine 

 

Fig.1.6 Phasor Diagram of Star System 

The voltage VRY between lines R and Y is obtained by adding VRN and VNY 

respectively. 

VRY = VRN+VNY = VRN – VYN 

Similarly          VYB = VYN+VNB = VYN – VBN 

VBR = VBN+VNR = VBN – VRN 

The line voltage VRY is obtained by adding VRN with reversed vector of VYN.VRY 

bisects the angle between VRN and –VYN 

VRY
2 = VL

2= Vph
2 + Vph

2 + 2 VphVphcos 600= 3Vph
2 

VRY = √3 Vph 

Line voltage = √3 phase voltage 

 The line voltages VRY, VYB, VBR are equal in magnitude and differ in phase 

by 1200. 

 Hence they form a balanced 3-phase voltage of magnitude √3 Vph.  

 The two voltages differ in phase by 300. 

  When the system is balanced, the three phase currents IR, IY, IB are 

balanced. 



  The magnitude and phase angle of current is determined by circuit 

parameters. 

 IR, IY, IB are line or phase currents.  

 The current in the neutral wire is IN and is by applying kirchoff’s current 

law at star point, we get 

IN = -( IR+ IY+ IB) 

 If the currents are balanced, then the neutral current is zero. 

 

1.2.2 Delta connection or MESH connection: 

 

Fig.1.7 Delta Connected System 

 The currents flowing through the phase windings IRR’, IYY’, and IBB’ or IRY, 

IYB, and IBR are called phase currents and are balanced as shown in 

phasor diagram Fig.1.8. 

 

Fig.1.8 Phasor Diagram of Delta System 

By applying KCL at node R 

IA+IBR = IRY, IR = IRY -  IBR 



Similarly by applying KCL at nodes Y and B 

IY = IYB -  IBR 

IB = IBR -  IYB 

The line current IR is obtained by adding IRY and –IBR vectorially. IR bisects the 

angle between IRY and –IBR 

IR2 = ILine
2= Iph

2 + Iph
2 + 2 IphIphcos 600 

= 3Iph
2 

IL = √3 Iph 

 Line current(IL) = √3 phase voltage(Iph) 

 The line current IR, IY, IB and also equal and differ in phase by 1200. They 

form a balanced system of currents.  

 The line and phase currents differ in phase by 300. 

1.3 Analysis of balanced three phase circuits 

A set of three impedances interconnected in the form of a star or delta 

form a 3-phase star or delta connected load.  

 If the three impedances are identical and equal then it is a balanced 3-

phase load, otherwise it is an unbalanced 3-phase load. 

The analysis of balanced 3-phase circuits is illustrated as follows 

1.3.1 Balanced delta connected load: 

 

Fig.1.9 Balanced Delta Connected Load 

Let us consider a balanced 3-phase delta connected load 

Determination of phase voltages: 

VRY = V∠00, VYB = V∠-1200, VBR = V∠ − 2400= V∠1200 

Determination of phase currents: 



Phase current = Phase voltage/ Load impedance 

IRY=
VRY

Z
  ; IYB=

VYB

Z
 ; IBR=

VBR

Z
 

Determination of line currents: 

Line currents are calculated by applying KCL at nodes R,Y,B 

IR = IRY – IBR ; IY = IYB – IRY ; IB = IBR – IYB 

 Note: Line currents are also balanced and equal to √3phase current. 

1.3.2 Balanced star connected load: 

Let us consider a balanced 3-phase star connected load. 

For star connection, phase voltage= Line voltage/(√3) 

For RYB sequence, the phase voltage is polar form are taken as 

VRN = Vph∠ − 900 ; VYN = Vph∠1500 ; VBN = Vph∠300 

 

 

Fig.1.10 Balanced Star Connected Load 

For star connection line currents and phase currents are equal 

IR = 
VRN

Z
 ; IY = 

VYN

Z
 ; IB = 

VBN

Z
 ; 

To determine the current in the neutral wire apply KVL at star point 

IN + IR + IY + IB =0 

IN = -( IR + IY + IB)   (since they are balanced) 

 In a balanced system the neutral current is zero.  

 Hence if the load is balanced, the current and voltage will be same 

whether neutral wire is connected or not. 

  Hence for a balanced 3-phase star connected load, whether the supply is 

3-phase 3 wire or 3-phase 4 wire, it is immaterial.  



 In case of unbalanced load, there will be neutral current. 

 

1.4 Power calculation in three phase balanced system: 

 In a balanced 3-phase load, the currents and voltages are balanced. 

  Hence the power in each phase is same and hence power calculations 

are based on per phase basis.  

 The total power is given by 3 times the power in each phase. 

 If Vph – voltage/ph, Iph – current/phase and the angle between voltage Vph 

and current Iph is θ then,  

 Active power/phase = VphIphcosθ watts/ph 

 Total active power = 3 VphIphcosθ watts 

Similarly, 

 Reactive power/phase = VphIphsinθ VAR/ph 

 Total reactive power = 3 VphIphsinθ VAR 

 Total volt amps = 3 * volt amps/ph =3 VphIph volt amps 

1.4.1 Expression for power in terms of Line Voltages & Line Currents: 

a. Star connected system: 

Total power = 3 VphIphcosθ 

For star connected systems VL = √3 Vph ; 

Vph = 
VL

√3
 and IL = Iph 

 Total power = 3(
VL

√3
)ILcos θ 

  = √3 VLILcos θ 

 Total reactive power = √3 VLIL sin θ 

 Total volt amps = √3 VLIL 

b. Delta connected system: 

 Total power = 3 VphIphcosθ 

For delta connected systems IL = √3 Iph ; 

Iph = 
IL

√3
 and VL = Vph 

 Total power = 3(
IL

√3
)VLcos θ 

  = √3 VLILcos θ 

 Total reactive power = √3 VLIL sin θ 

 Total volt amps = √3 VLIL 

 



 For either balanced star or delta connected systems, the total active power is 

given by total reactive power = √3 VLIL sin θ.Where θ angle between phase 

voltage and phase current. 

 The power factor of balanced 3-phase load (either star or delta connected) is 

the cosine of the angle between phase voltage and phase current. 

 In unbalanced circuit, the power, reactive power and apparent power in each 

phase is different. Hence they have to be calculated separately and to be 

added to get total power in 3-phase system. 

 

 

 

1.5.1 Two watt meter method applied to balanced loads: 

In this section, we derive the expression for the readings of watt meters 

W1 and W2 used to measure power in a balanced 3 phase load connected to a 

balanced 3-phase supply. 

Consider a balanced star connected load of impedance Z∟θ ohms/ph as shown 

in Fig1.11.  

 

 

Fig.1.11 Two Wattmeter method to measure Active Power 

The phasor diagram of voltage and currents are shown in Fig.1.12 



 

Fig.1.12 

The phasor diagram is drawn for the RYB sequence is as shown. 

Watt meter W1: 

 Current through current coil = IR 

 Voltage across pressure coil = VRB= VRS – VBS 

 Phase difference between VRB and IR = 30- θ 

 Power measured by W1 = VRBIR cos(30- θ) 

 Since the load is balanced, and the supply is also balanced VRB and IR 

represent line voltage and line currents respectively. 

 Reading of W1= VLILcos(30 - θ) 

Watt meter W2: 

 Current through current coil = IY 

 Voltage across pressure coil = VYB = VYS – VBS 

 Phase difference between VYB and IY = 30+ θ 

 Power measured by W2 = VYBIY cos(30+θ) 

           = VLILcos(30+ θ)        (1) 

 The total power is given by algebraic sum of the watt meter readings. 

 W1+W2= VLIL[cos(30 - θ) + cos(30+ θ)] 

     = VLIL 2 cos 300cos θ = √3 VLILcos θ 

 W1+W2=  √3 VLILcos θ = total power          (2) 

 The difference in the wattmeter reading: 

W1-W2= VLIL [cos(30 - θ) -cos(30+ θ)] 

    = VLIL 2 sin 300 sin θ = VLILsin θ 

 Total reactive power = √3(W1-W2)= √3 VLIL sin θ      (3) 

 Dividing (3) by (2) we get, 

tanθ = √3(W1-W2)/W1+W2       (4)    



From the above equation (4) we can calculate phase angle θ and hence power 

factor cos θ can be determined from the watt meter readings. θ is considered 

+ve for lagging p.f and –ve for leading p.f. 

 

1.5.2. Measurement of Reactive Power: 

 

Reactive Power can be measured only for balanced Loads. 

To measure Reactive Power Wattmeter current coil will be placed in one of the 

line and Pressure coil between the remaining two line terminals as shown in 

figure1.13 

 
Fig.1.13 Single Wattmeter method to measure Reactive Power 

Power measured by the wattmeter W1 can be obtained from the product of 

current through current coil(IR) and voltage measured by the pressure coil(VYB) 

 

 
Fig.1.14 Phasor Diagram 



From the phasor diagram angle between VYB and IR is 90 − 𝜃 

Power measured by wattmeter W1is given by W1 = 𝑉𝑌𝐵𝐼𝑅 cos(90 − 𝜃) 

              = 𝑉𝑌𝐵𝐼𝑅 sin θ 

              = 𝑉𝐿𝐼𝐿𝑠𝑖𝑛 𝜃 

 

Reactive Power =√3 𝑉𝐿𝐼𝐿𝑠𝑖𝑛 𝜃= √3 𝑊1 

By using this method one can measure reactive Power as √3  times of 

wattmeter reading. 

 

 

 



UNIT - III 

Unbalanced Three Phase Circuits 

Objectives:   

 To analyze three phase Unbalanced systems 

 To Measure active and reactive power in Three Phase Unbalanced 

systems. 

Syllabus: 

Analysis of three phase Unbalanced circuits- Loop method-Application of 

Millman’s theorem-Star Delta transformation Technique-Measurement of  

power  

Outcomes: 

On completion the student should be able to:  

 Describe the reasons for, and the generation of the Unbalanced Voltages 
and Circulating currents. 

 Solve three-phase circuits in terms of phase and line quantities, and the 

power developed in three-phase Unbalanced loads.  
 Measure power dissipation in Unbalanced three-phase loads.  

 

3.1 Introduction: 

 An unbalanced three-phase circuit is one that contains at least one 

source or load that does not possess three-phase symmetry. A source with the 

three source-function magnitudes unequal and/or the successive phase 

displacements different from 120° can make a circuit unbalanced. Similarly, a 

three-phase load with unequal phase impedance values can make a circuit 

unbalanced. 

The single-phase equivalent circuit technique of analysis does not work 

for unbalanced three-phase circuits. General circuit analysis techniques like 

mesh analysis or nodal analysis will have to be employed for analyzing such 

circuits. 

 



3.2 Analysis of Three phase unbalanced circuits: 

3.2.1 Unbalanced delta connected load 

Let us consider an unbalanced delta connected load fed from a 3-phase 3 

wire balanced supply. Since the terminals are fixed, the voltage drop across 

each load impedance is known. Hence the current in each load impedance can 

be computed and then apply KCL at junctions to obtain the line currents.  

 The method of solution is similar to that of a balanced delta connected 

load.  

 But the phase currents will neither be equal in magnitude nor have a 

phase difference of 1200.  

 

Fig 3.1 Unbalanced Delta Load 

Determination of phase voltages: 

VAB = V∠00, VBC = V∠-1200, VCA = V∠ − 2400=  V∠1200 

Phase currents are computed as 

IAB= 
𝑉AB

𝑍AB
 ; IBC = 

𝑉BC

𝑍BC
 ; ICA = 

𝑉𝐶𝐴

𝑍𝐶𝐴
 

Determination of Line currents: 

By applying KCL at junction R, Y, B we get, 

IA =IAB – IBC; IB =IBC – ICA; IC =ICA – IAB; 

Check: IA + IB + IC = 0 

 The sum of the line currents in a 3-phase 3-wire system is zero. 

 

3.2.2 Unbalanced star connected load with neutral 

Let us consider an unbalanced star connected load which is fed from a 3-phase 

4 wire supply. The neutral of the supply is connected to the star point of the 

load i.e., the star point of the load and neutral are at the same potential 

(ground potential). The voltage across each of the load impedance is known and 

is equal to the line to neutral voltage (phase voltage). The currents in each of 



the load impedances can be computed and they will be line currents and they 

are unbalanced.           

 

Fig.3.2 Unbalanced Star Load with Neutral 

 Hence in an unbalanced system the neutral wire will carry current and 

forms the return path for the phase currents.  

 The analysis of 3-phase 4-wire star connected unbalanced load is simple 

compared to 3-phase 3 wire star or delta connected loads.  

Determination of phase voltages 

VRS= 
𝑉

√3
∠00 ; VYS = 

𝑉

√3
∠ − 1200 ; VBS = 

𝑉

√3
∠1200 ; 

Determination of line currents 

IR= 
𝑉𝑅𝑆

𝑍𝑅
 ; IY = 

𝑉𝑌𝑆

𝑍𝑌
 ; IB = 

𝑉𝐵𝑆

𝑍𝐵
 ; 

Neutral current IN = -( IR + IY + IB) 

 

3.2.3 Unbalanced star connected load without neutral: 

An unbalanced star connected load is supplied from a balanced 3-phase 

3 wire supply. Since the load is unbalanced, the voltages across each load 

impedance are not equal to phase voltage but it is different. The voltages across 

each load impedance if it is determined, then we can determine the line 

currents. 

 Since the voltage across ZA, ZB, ZC are different the voltage of the star 

point S of the 3-phase load, and of the neutral point of the supply are 

different. 

  The potential difference between the neutral point of the supply N and 

star point S of the load is called Neutral displacement or Neutral shift. 

 



 

Fig.3.3 Unbalanced star connected load without neutral 

 

3.3 Loop Method: 

 

Fig.3.4 Unbalanced Star Load for Loop Analysis 

 

The voltage VAN is taken as reference. Applying KVL for each of the loops. 

Loop 1: 

I1ZR + (I1 - I2)ZY= VRY 

I1(ZR + ZY) – I2(ZY) =VRY   

Loop 2: 

(I2 – I1) ZY + I2ZB = VYB 

-I1(ZY) + I2(ZY + ZB) = VYB 

  



Writing down the above equations in matrix form 

 

[
𝑍𝑅+𝑍𝑌 −𝑍𝑌

−𝑍𝑌 𝑍𝑌 + 𝑍𝐵
] [

𝐼1

𝐼2
] [

𝑉𝑅𝑌

𝑉𝑌𝐵
] 

By using cramer’s rule we will get I1 and I2 

 

The line currents IR, IY and IB are given by 

IR = I1 ; IY = I2 – I1 ; IB = -(I2) 

The voltage across each load impedance 

VRN = IR * ZR; VYS = IY * ZY ; VBS = IB* ZB ; 

The neutral displacement voltage VNS 

VNS = VRN – VRS 

 

3.4 Milliman’s Theorem: 

 

Fig.3.5 Star  Connected Load 

In this method, the neutral shift voltage (VNS) is determined by using the 

following expression derived below: 

VNS =- 
(VRNYR+VYNYY+VBNYB  )

YR+YY+YB
 

 The line to neutral voltages VRN , VYN , and VBN are the balanced phase 

voltages obtained from the supply.  

 YR , YY and YB are the star connected load admittances. 

 

 



The voltages across the load impedances 

 

VRS = VRN + VNS 

VYS = VYN + VNS 

VBS = VBN + VNS 

The line currents are given by 

 

IR= 
VRS

ZR
 ; IY = 

VYS

ZY
 ; IB = 

VBS

ZB
 ; 

 

Applying KCL at the star point S, 

 

IR + IY + IB =0 

 
VRS

ZR
 +  

VYS

ZY
 +  

VBS

ZB
 =0 

 

3.5 Star / Delta Conversion: 

For solving an unbalanced star connected load, we will replaced it by an 

equivalent delta connected load and solve the delta connected load. The 

principle to get an equivalent delta connected load is to equate the impedances 

between corresponding terminals of the two loads as shown below. 

 

Fig.3.6 Star Delta Equivalents 

For delta to star conversion 

ZR = 
ZRYZBR

ZRY+ZYB+ZBR
    

ZY = 
ZRYZYB

ZRY+ZYB+ZBR
    

ZB = 
ZYBZBR

ZRY+ZYB+ZBR
    

 

 



ZRY = ZR + ZY + 
ZRZY

ZB
 

ZYB = ZY + ZB + 
ZYZB

ZR
 

   ZBR =ZB + ZR + 
ZBZR

ZY
   . 

 we can replace a star connected load by an equivalent delta connected load 

(𝜆 − Δ conversion) 

Phase currents are computed as 

IRY= 
𝑉𝑅𝑌

𝑍𝑅𝑌
 ; IYB = 

𝑉𝑌𝐵

𝑍𝑌𝐵
 ; IBR = 

𝑉𝐵𝑅

𝑍𝐵𝑅
 

Determination of Line currents: 

By applying KCL at junction R, Y, B we get, 

IR =IRY – IBR; IY =IYB – IRY ; IB =IBR – IYB ; 

Check: IR + IY + IB = 0 

 

3.6 Measurement of Power: 

 

3.6.1 Two wattmeter method: 

 

 This is the most common method of measurement of power in 3-

phase circuits.  

 This method can be employed for balanced or unbalanced, star or 

delta connected 3-phase circuits. 

 

Fig.1.17 Two Wattmeter method to measure Active Power in unbalanced Load 



Let us consider a 3-phase star connected load of impedances ZR , ZY, and 

ZB and the two watt meters are connected to measure total power. 

The current coils of the two watt meters W1 and W2 are connected in two 

lines R and Y, the potential coils W1 and W2 are connected between lines R-B 

and Y-B. 

Let VRS, VYS and VBS be the instantaneous values of voltage drops across 

the load impedances. 

Let iR, iY and iB be the instantaneous values of currents in the load 

impedances. 

The total instantaneous power in the 3-phase load  

                 = VRS iR+VYSiY+VBSiB                                  (1.1) 

From Fig., we see that instantaneous current through W1 is iR and the 

instantaneous voltage across the pressure coil of W1 is VRB and hence the 

instantaneous power measured by W1 is  

W1 = iRVRB= iR[VRS-VBS]            (1.2) 

Similarly the instantaneous power measured by W2 is  

W2 = iYVYB= iY[VYS-VBS]            (1.3) 

Sum of the instantaneous power read by W1 and W2 is 

W1+W2= iR[VRS-VBS] +iY[VYS-VBS] 

 = iRVRS+iYVYS-VBS[iR+iY]              (1.4) 

Applying KCL to node s, i.e., star point, we get, 

iR+iY+iB = 0 

iR+iY = - iB              (1.5) 

substituting equation (1.5) in equation (1.4) we get, 

W1 +W2 = iRVRS+ iYVYS+  iB VBS            (1.6) 

 Since equation (1.1) and (1.6) are identical, the sum of the two watt 

meter readings given the total instantaneous power.  

 Actually the power measured by each watt meter varies from instant to 

instant. But inertia of the moving systems makes the pointer to read the 

average power. 



 The above proof does not assume a balanced load or a sinusoidal wave 

form hence is applicable under all conditions. 

 

Assignment-Cum-Tutorial Questions 

 

SECTION-A 

 

1. An unbalanced system is caused by 

a)  The source voltages are not equal in magnitude  

b)  Difference in phase by angles that are unequal 

c) Load impedances are unequal. 

d) All the above 

 

2. A 400 V, 3-phase, 4 wire, star-connected system supplies three resistive 

loads of 15 kW, 20 kW and 25 kW in the red, yellow and blue phases 

respectively. Determine the current flowing in each of the four 
conductors. 

 

3. For the unbalanced circuit in Figure below, Find the generator current 
Ica, the line current IcC, and the phase current IAB. 
 

 
 

4. For the circuit in Figure shown below, Za = 6 − j8, Zb = 12 + j9 , and Zc = 

15 . Find the line currents Ia , Ib, and Ic. 

      



 

5. A delta-connected load whose phase impedances are ZAB = 50 , ZBC = 

−j50 , and ZCA = j50 is fed by a balanced wye-connected three-phase 

source with Vp = 100 V. Find the phase currents. 
 

6. A balanced three-phase wye-connected generator with Vp = 220 V 

supplies an unbalanced wye-connected load with ZAN = 60 + j80 , ZBN = 

100 − j120, and ZCN = 30 + j40 . Find the total complex power absorbed 
by the load. 
 

7. In Figure, two wattmeters are properly connected to the unbalanced load 
supplied by a balanced source such that Vab = 208  V with positive phase 

sequence. 

(a) Determine the reading of each wattmeter. (b) Calculate the total 
apparent power absorbed by the load. 

 

 
 

 

SECTION-B 

 

1. The unbalanced ∆ load of Fig. is supplied by balanced line-to-line voltages 

of 440 V in the positive sequence. Find the line currents. Take Vab as 

reference.  

 

 



2. The unbalanced Y-load of Fig has balanced voltages of 100 V and the acb 

sequence. Calculate the line currents and the neutral current. Take 

ZA=15Ω, ZB=(10+j5)Ω, ZC=(6-j8)Ω       

   

 
 

 

 

 

3. For  the phase sequence indicator as shown in Figure find the equivalent 

 

 
 

 

4. Find the line currents in the unbalanced three-phase circuit of Figure 
and the real power absorbed by the load. 

 
 



5. For the unbalanced circuit in Figure find:  
        (a) the line currents, 

        (b) the total complex power absorbed by the load, and  

        (c) the total complex power supplied by the source. 

 
 

6. Consider the unbalanced circuit shown in Figure below. Find the 

generator current Iab, the line current IbB, and the phase current IBC. 
 

 
   

7. Three watt meters W1, W2, and W3 are connected, respectively, to phases 

a, b, and c to measure the total power absorbed by the unbalanced wye 

connected load.  

(a) Predict the wattmeter readings. (b) Find the total power absorbed. 

 
 



8. Refer to the unbalanced circuit of Figure. 
        Calculate: 

        (a) the line currents 

        (b) the real power absorbed by the load 
        (c) the total complex power supplied by the source 

 

 

 
 

 
 

SECTION-C 

 

1. A good phase sequence indicator operates with one lamp very bright and 

the other very dim. Using the same lamps as in figure but with a 
capacitor of different value, can you design a better indicator? 

 

                   
 

Figure shows a typical phase indicator consisting of two resistors 

representing two light bulbs each rated 15 watts, 120 volts at 60Hz 
frequency, and a capacitor connected to a120 volt three phase system. 

 

 
2. An unbalanced star connected load is connected across a 3-φ, 400V 

balanced supply of phase sequence RYB as shown in fig. Two wattmeters 

are connected to measure the total power supplied as shown in fig. Find 

the readings of the wattmeters.  

 



 

 

3. Given an unbalanced delta connected load, obtain the respective phase 

currents. 

 

 

4. Find out the equivalent capacitance when the following transformation is 

used 

 

 

5. A 230V (phase), 50 Hz, three phase, 4-wire system has a phase sequence 
ABC. A unity power factor load of 4 kW is connected between phase A 

and neutral N. It is desired to achieve zero neutral current through the 

use of a pure inductor and a pure capacitor in the other two phases. The 
values of inductor and capacitor are   

      (a) 72.95 mH in phase C and 139.02 µF in phase B. 

      (b) 72.95 mH in phase B and 139.02 µF in phase C. 



      (c) 42.12 mH in phase C and 240.79 µF in phase B. 

      (d) 42.12 mH in phase B and 240.79 µF in phase C. 

 

    6. For the three phase system in Figure, compute the generator voltages 

Vab, Vbc , and Vca . Assume that each transformer impedance on the high side 

is j30 and the transformer resistances are negligible. Assume also that the 

lines are very short and thus their impedances can are also negligible. 

   

 

7. As shown in Figure a three-phase four-wire line with a phase voltage of 120 

V supplies a balanced motor load at 260 kVA at 0.85 pf lagging. The motor load 

is connected to the three main lines marked a, b, and c. In addition, 

incandescent lamps (unity pf) are connected as follows: 24 kW from line a to 

the neutral, 15 kW from line b to the neutral and 9 kW from line a to the 

neutral. 

(a) If three watt meters are arranged to measure the power in each line, 

calculate the reading of each meter. 

(b) Find the current in the neutral line. 

 



UNIT - IV 

Transient Analysis for D.C Excitation 

 

Objectives:   

 To introduce the concept of Transients in electrical circuits. 

 To study the transient behavior of RL, RC & RLC circuits for DC 

excitation. 

Syllabus:   

Transient response of series R-L, R-C and R-L-C circuits for DC excitation- 

Initial Conditions-Solution method using differential equation approach and 

Laplace transform method 

Outcomes: 

On completion the student should be able to:  

 Calculate the time constant for RL and RC circuits. 

 Analyze the transient behavior of first order and second order circuits for 

DC excitations using differential equation approach & Laplace transform 

approach. 

 Obtain the transformed networks and find the response using inverse 

Laplace transforms. 

 

4.1 Introduction to Transients 

Transient analysis (or just transients) of electrical circuits is as 

important as steady-state analysis. When transients occur, the currents and 

voltages in some parts of the circuit may many times exceed those that exist in 

normal behavior and may destroy the circuit equipment in its proper operation. 

We may distinguish the transient behavior of an electrical circuit from its 

steady-state, in that during the transients all the quantities, such as currents, 

voltages, power and energy, are changed in time, while in steady-state they 



remain invariant, i.e. constant (in d.c operation) or periodical (in a.c operation) 

having constant amplitudes and phase angles. 

The cause of transients  

 change in circuit parameters and/or in circuit configurations, which 

usually occurs as a result of switching (commutation),  

 short, and/or open circuiting,  

 Change in the operation of sources etc.  

The transient processes are attained by the interchange of energy, which 

is usually stored in the magnetic field of inductances or/and the electrical field 

of capacitances. Any change in energy cannot be abrupt otherwise it will result 

in infinite power (as the power is a derivative of energy, p=dw/dt), which is in 

contrast to physical reality. All transient changes, which are also called 

transient responses (or just responses), vanish and, after their disappearance, 

a new steady-state operation is established. In this respect, we may say that 

the transient describes the circuit behavior between two steady states: an old 

one, which was prior to changes, and a new one, which arises after the 

changes. 

A few methods of transient analysis are known: the classical method, The 

Cauchy-Heaviside (C-H) operational method, the Fourier transformation 

method and the Laplace transformation method.  

Comparing the classical method and the laplace transformation method 

it should be noted that the latter requires more knowledge of mathematics and 

is less related to the physical matter of transient behavior of electric circuits 

than the former. 

Classical method of transient analysis is based on the determination of 

differential equations and splitting the solution into two components: natural 

and forced responses. The classical method is fairly complicated 

mathematically, but is simple in engineering practice.  

 

 



4.2 Natural and Forced Responses: 

Solving differential equations by the classical method, complete solution 

of any linear differential equation as composed of two parts: the complementary 

solution (or natural response) and the particular solution (or forced response). 

To understand these principles, let us consider a first order differential 

equation, 

    
dv

dt
+ P(t)v = Q(t)     (4.1) 

Here Q(t) is identified as a forcing function, which is generally a function 

of time (or constant, if a d.c. source is applied) and P(t), is also generally a 

function of time, represents the circuit parameters. In our study, however, it 

will be a constant quantity, since the value of circuit elements does not change 

during the transients (indeed, the circuit parameters do change during the 

transients, but we may neglect this change as in many cases it is not 

significant). 

    v = e−Pt ∫ QePtdt + 𝐴e−Pt    (4.2) 

General solution can be written as 

v = vPI + vCF 

vPI = Particular integral = e−Pt ∫ QePtdt 

vCF = Complementary Function = 𝐴e−Pt 

In general vPI may be written as a Steady state value, designated asVss. 

Remaining part  is called Transient portion of solution Vt. 

V = Vss + Vt 

VPI = Vss = Source response =  Steady state response = Forced response 

VCF = Vt = Source free response =  Transient response = Natural response 

Complete solution is composed of two parts. The first one, which is 

dependent on the forcing function Q, is the forced response (it is also called the 

steady state response or the particular solution or the particular integral). The 

second one, which does not depend on the forcing function, but only on the 

circuit parameters P (the types of elements, their values, interconnections, etc) 



and on the initial conditions A, i.e., on the ‘‘nature’’ of the circuit, is the natural 

response. It is also called the solution of the homogeneous equation, which 

does not include the source function and has anything but zero on its right 

side. Following this rule, we will solve differential equations by finding natural 

and forced responses separately and combining them for a complete solution. 

 

 

4.3 Transient response of series RL, RC, RLC circuits for DC excitation 

4.3.1 Transient Response of series RL circuit for DC excitation 

Consider series RL circuit shown in Fig.2.1. Consider that switch closed 

at t=0 and before that switch is open for a long time. 
Initial condition 

At t = 0−, Switch is open 

i(0−) = I0 = 0 
And also we know that inductor does not allow sudden change in current 

through it. 

i.e i(0+) = i(0−) = I0 = 0 



For 𝒕 > 𝟎 the switch is closed 

Apply KVL to the circuit  

Ri(t) + L
di(t)

dt
= V  

 

Rearranging 

di(t)

dt
+

R

L
i(t) =

V

L
 

The solution to above equation is 𝑖(𝑡) =
V

R
+ 𝑐e−

R

L
t
                                         (4.3) 

To find c 

 To find the arbitrary constant ‘c’ use the initial condition 𝑖(0+) = 𝑖(0−) =
𝐼0 = 0 

i(0) = 0 =
V

R
+ c 

c = −
V

R
 

Substituting c in equation 4.3 we get 

 

 

 

 

 

The point P shown in 

Fig.2.2 denotes that current 

rise in the circuit rises to 0.632 

times maximum value in 

steady state. The time required 

for current to rise to 0.632 of 

its final value is known as time 

constant of given RL circuit. It 

is denoted by 𝜏 

 

 

 
𝜏 =

L

R
 sec 

i(t) =
V

R
−

V

R
e−

R
L

t
 

 

i(t) =
V

R
(1 − e−

R
L

t) 

 

 



Significance of Time constant 

To study significance of Time constant substitute different values of t in i(t) 

At  t = τ,   i(t) =
V

R
(1 − e−1) = 0.632

V

R
 

At  t = 2τ,   i(t) =
V

R
(1 − e−2) = 0.8646

V

R
 

At  t = 4τ,   i(t) =
V

R
(1 − e−4) = 0.9816

V

R
 

At  t = 6τ,   i(t) =
V

R
(1 − e−6) = 0.9975

V

R
 

From above values up to first time constant period, the initial rate of 

raise in current is high. But after one time constant period, this rate slows 

down for further period of time. Ideally the current reaches steady state value 

at infinite time, but practically the current reaches steady state value after t =

6τ or 8τ. 

The voltage across the Inductor 

VL = L
di(t)

dt
 

VL = L
d

dt
[
V

R
(1 − e−

R
L

t)] 

VL = L [0 − (
V

R
) (−

R

L
) e−

R
L

t)] 

 

 

 

The voltage across the Resistance 

VR = Ri(t) 
 

 

 

4.3.2 Transient Response of series RC circuit for DC excitation 

Consider series RC circuit shown in 

Fig.2.4. Consider that switch is closed at t=0 

and before that switch is open for a long 

time. 

VL(t) = Ve−
R
Lt

 

 

VR(t) = V(1 − e−
R
L

t) 
 



To find transient response of driven series RC circuit means to find 

expression for voltage across capacitor VC(t) 

Initial condition 

At t = 0−, Switch is open 

Before closing the switch active source is not presented in the circuit, so 

the initial voltage across capacitor is zero. 

VC(0−) = V0 = 0 

And also we know that Capacitor does not allow sudden change in 

voltage across it. 

i.e VC(0+) = VC(0−) = V0 = 0 

For 𝐭 > 𝟎 the switch is closed 

Now the voltage source is introduced in the circuit. 

Apply KVL to the circuit 

    Ri(t) +
1

C
∫ i(t)dt = V    (4.4) 

Here i(t) is the current in the circuit also flows through the capacitor. 

Differentiating the equation w.r.t time     

𝑅
𝑑𝑖(𝑡)

𝑑𝑡
+

1

C
i(t) = 0   (4.5) 

    i(t) = Ke−t
RC⁄   (4.6) 

K= Arbitrary Constant 

To find K 

 To find K use the initial condition at t = 0, VC(0+) = VC(0−) = V0 = 0 

Substitute t=0 VC(t) = 0 in equation 2.4 

Ri(0) = V ⇒ i(0) =
V

R
 

Substituting t=0  in equation 4.6 
V

R
= K 

Substitute K value in equation 4.6 

 

 
 

Above expression is combination of steady state response 0 and transient 

response  
V

R
e−t

RC⁄  

 

 

i(t) =
V

R
e−t

RC⁄  

 

 



In the above equation RC is time constant of the series RC circuit. 

τ = RC sec 

Significance of Time constant 

To study significance of Time constant substitute different values of t in i(t) 

At  t = τ,   i(t) =
V

R
e−1 = 0.3679 

V

R
 

 

At  t = 2τ,   i(t) =
V

R
e−2 = 0.1353 

V

R
 

 

At  t = 4τ,   i(t) =
V

R
e−4 = 0.0183 

V

R
 

 

At  t = 6τ,   i(t) =
V

R
e−6 = 0.0025 

V

R
 

From above values we can observe that, the current through capacitor 

drops from 
V

R
 to 0.3679 in one time constant. But after one time constant 

period, this rate slows down for further period of time. Ideally the current 

reaches zero value at infinite time. 

 

4.3.3 Transient Response of series RLC circuit for DC excitation 

Consider a series RLC circuit shown in fig. 2.6, such 

that switch is closed at t=0 and before that switch  is 

open for a long time. 

Initial condition 

At t = 0−, Switch is open 

i(0−) = I0 = 0 



And also we know that inductor does not allow sudden change in current 

through it. 

i.e i(0+) = i(0−) = I0 = 0 

Before switch is closed at t = 0−, there is no current through the circuit 

and capacitor is also uncharged. 

Current through inductor and voltage across capacitor does not change 

instantaneously. 

VC(0+) = VC(0−) = V0 = 0 

For 𝐭 > 𝟎 the switch is closed 

Apply KVL to the circuit 

   Ri(t) + L
di(t)

dt
+

1

C
∫ i(t)dt

t

0
= V    (4.7) 

  This is an integro differential equation, differentiating on both sides to get the 

total equation in differential form. 

L
d2i(t)

dt2
+ R

di(t)

dt
+

i(t)

C
= 0 

 

d2i(t)

dt2
+

R

L

di(t)

dt
+

i(t)

LC
= 0 

Above equation is of quadratic expression form. 

Let m1and m2 be two roots for the above equation given by 

𝑚1, 𝑚2 =
−

R
L ± √(

R
L)

2

−
4

LC
2

= −
R

2L
± √(

R

2L
)

2

−
1

LC
 

Depending on the values of R,L and C three different cases arise 

Case (i) 

𝐑𝟐 >
𝟒𝐋

𝐂
(Discriminant is positive) (Over damped) 

The roots m1, m2 are real and different 

The solution of this equation of the form 



    i(t) = Aem1t + Bem2t(2.8) 

Evaluate the constants A and B 

To evaluate the constants A and B, we have to substitute the initial conditions 

(i) At t=0, i(0+) = i(0−) = I0 = 0 

(ii) At t=0, VC(0+) = VC(0−) = V0 = 0  i.e 
1

C
∫ i(t)dt

t

0
= 0 

At t=0, Substitute these values in the equation 4.7 and 4.8 we get 

 0 + L
di(t)

dt
+ 0 = V 

di(t)

dt
|t=0 =

V

L
 

i(0) = Aem1(0) + Bem2(0) 

0 = A + B     (4.9) 

Differentiate equation 4.8 

di(t)

dt
|t=0 = Am1em1(0) + Bm2em2(0) 

    Am1 + Bm2 =
V

L
     (4.10) 

From equations 4.9 and 
4.10 

A(m1 − m2) =
V

L
 

A =
V

L(m1 − m2)
 

B =
−V

L(m1 − m2)
 

i(t) =
V

L(m1 − m2)
[em1t

− em2t] 

 

 



Case (ii) 

𝐑𝟐 =
𝟒𝐋

𝐂
  (Discriminant is Zero) (Critically damped) 

The roots m1, m2 are real and equal. 

m1,2 = −
R

2L
 

The general solution of differential equation when roots of characteristic 

equation are equal is 

i(t) = (A + Bt)emt 

i(t) = (A + Bt)e−
R

2L
t
 

Evaluate the constants A and B 

To evaluate the constants A and B, we have to substitute the initial conditions 

(i) At t=0, i(0+) = i(0−) = I0 = 0 

(ii) At t=0, VC(0+) = VC(0−) = V0 = 0  i.e 
1

C
∫ i(t)dt

t

0
= 0 

(i) i(0) = (A + B(0))e−
R

2L
(0)

 

i(0) = A = 0 
 

(ii) 
di(t)

dt
|t=0 =

V

L
 

di(t)

dt
= (A + Bt) (−

R

2L
) e−

R
2L

t + (B)e−
R

2L
t
 

di(t)

dt
|t=0 = (A + B(0)) (−

R

2L
) e−

R

2L
(0) + (B)e−

R

2L
(0) =

V

L
 

A (−
R

2L
) + (B) =

V

L
       

B =
V

L
  since A = 0 

i(t) =
V

L
t e−

R
2L

t
 

 

Case (iii) 

𝐑𝟐 <
𝟒𝐋

𝐂
(Discriminant is negative) (Under damped) 

The roots m1, m2 are Complex conjugates. 

m1 = −α + jβ 

m2 = −α − jβ 



= −
R

2L
±

1

2L
√R2 −

4L

C
 

α = −
R

2L
 

β =
1

2L
√

4L

C
− R2 

The solution is 

i(t) = Ae(−α+jβ)t + Be(−α−jβ)t = e−αt[Ae(jβ)t + Be(−jβ)t] 

     = e−αt[(A + B)cosβt + j(A − B)sinβt] 

                                     i(t) = e−αt[Mcosβt + Nsinβt]                  (4.11) 

Where M=(A + B) and N= j(A − B) 

The constants can be found by using initial conditions  

(i) At t=0, i(0+) = i(0−) = I0 = 0 

(ii) At t=0, VC(0+) = VC(0−) = V0 = 0 

i.e 
1

C
∫ i(t)dt

t

0
= 0 

 

 

 

 

 

 

 

 

4.4 LAPLACE TRANSFORM 
 

4.4.1 Introduction 

Laplace transform is an alternate approach to solve transients which is 

easier for complex circuits.So, the transform method in general can be 
represented by the expression 

f(t) → F(s) 



Which shows the one-to-one correspondence between the time-domain 

function f(t) and its frequency domain transform F(s), where s = σ + jω is the 

complex frequency. 

4.4.2 Definition of the Laplace Transform 

The so called two-sided or bilateral Laplace transform of F(t) is defined as 

F(s) = ∫ e−stf(t)dt
∞

−∞

 

In circuit analysis problems the forcing and response functions do not 

usually exist endlessly in time, but rather they are initiated at some specific 

instant of time selected as t=0. Thus, such functions that do not exist for t<0 

can be described with the help of unit step functions as f (t)u(t). For these 

functions the Laplace transform defining integral is taken with the lower limit 

at t = 0−. 

F(s) = ∫ e−stf(t)dt
∞

−∞

= ∫ e−stf(t)dt
∞

0−
 

The latter integral defines the one-sided or unilateral Laplace transform, 

or simply the Laplace transform of f (t). The lower limit t = 0−(as distinguished 

from t= 0 or t=0+) in a one-sided Laplace transform is taken in order to include 

the effect of any discontinuity at t=0, such as an impulse function and 

independent initial conditions such as currents in inductances iL(0−) and 

voltages across capacitances 𝑣𝐶(0−). 

Key Points 

1. The terms ‘‘two-sided’’ or bilateral are used to emphasize the fact that 

both positive and negative times are included in the range of integration. 

2. In transient analysis of electric circuits t = 0−is denoted as the time just 

before the switching action, and t = 0+as the time just after the switching 

action, representing radically different states of the circuit. 

Mathematically, f(0−) is the limit of f (t) as t approaches zero through 

negative values (t<0), or the limit from the right, and f(0+) is the limit as t 

approaches zero through positive values (t>0), or the limit from the left. 

 



4.4.3 Steps in Applying the Laplace Transform: 

1. Transform the circuit from the time domain to the s-domain. 

2. Solve the circuit using nodal analysis, mesh analysis, source 

transformation, superposition, or any circuit analysis technique with 

which we are familiar. 

3. Take the inverse transform of the solution and thus obtain the solution 
in the time domain. 

 



 

 

 

4.5 Application of Laplace Transforms to series RL, RC, RLC circuits with 

DC Excitation 

4.5.1 Transient Response of series RL circuit for DC excitation 

Consider series RL circuit shown in Fig.. Consider that switch closed at 

t=0 and before that switch is open for a long time. 

Initial condition 

At t = 0−, Switch is open 

i(0−) = I0 = 0 

And also we know that 

inductor does not allow sudden 

change in current through it. 

i.e i(0+) = i(0−) = I0 = 0 



For 𝐭 > 𝟎 the switch is closed 

ApplyKVL to the circuit 

Ri(t) + L
di(t)

dt
= V 

ApplyLaplace transform to the above 

equation 

RI(s) + L(sI(s) − i(0)) =
V

s
 

We know that 

i(0+) = i(0−) = I0 = 0 

RI(s) + L(sI(s) − 0) =
V

s
 

RI(s) + LsI(s) =
V

s
 

I(s)(R + Ls) =
V

s
 

     I(s) =
V

s(R+Ls)
    

Applying partial fractions 

     I(s) =
A

s
+

B

(R+Ls)
    (4.18) 

V

s(R + Ls)
=

A

s
+

B

(R + Ls)
 

V

s(R + Ls)
=

A(R + Ls) + Bs

s(R + Ls)
 

    V = A(R + Ls) + Bs     (4.19) 

Substitute s=0 in equation 4.19 

V = A(R + 0) + B(0) 

A =
V

R
 

Substitute s = −
R

L
 in equation 4.19 



V = A (R + L (
−R

L
)) + B (

−R

L
) 

B =
V

(
−R
L )

 

Substitute A and B values in the equation 4.18 we get 

I(s) =

V
R
s

+

V

(
−R
L )

(R + Ls)
 =

(
V
R)

s
−

VL

RL (s +
R
L)

 

I(s) =
(
V
R)

s
−

(
V
R)

(s +
R
L

)
 

Applying inverse Laplace transform to the above equation we get 

i(t) =
V

R
−

V

R
e−

R

L
t =

V

R
(1 − e−

𝑅

𝐿
𝑡) 

The voltage across the Resistance 

VR = Ri(t) 

 

 

 

VL(t) = V − VR(t) 

 

 

We can see that the current starts at 

zero and increases up to V/R with a time 

constant (τ =
L

R
)  and with the behaviour of an 

inverse exponential decay function. It is 

common to consider the current in steady-state 

after approximately 5τ.  

 

It is important to keep in mind that the 

current cannot change instantaneously due to the conservation of the 

movement in the magnetic flux associated to the inductor. In other words, the 

𝑉𝑅(𝑡) = 𝑉(1 − e−
R
L

t) 
 

𝑉𝐿(𝑡) = 𝑉e−
R
L

t
 

 



magnetic flux has to be continuous, i.e., an instant change in the current 

would require an infinite voltage which is obviously impossible in a real system.  

 

 

4.5.2 Transient Response of series RC circuit for DC excitation 

Consider series RC circuit shown in Fig2.17. Consider that switch closed 

at t=0 and before that switch is open for a long time. 

To find transient response of driven series RC circuit means to find 

expression for voltage across capacitor VC(t) 

Initial condition 

At t = 0−, Switch is open 

Before closing the switch 

active source is not presented 

in the circuit, so the initial 

voltage across capacitor is 

zero. 

VC(0−) = V0 = 0 

And also we know that 

Capacitor does not allow sudden change in voltage across it. 

i.e VC(0+) = VC(0−) = V0 = 0 

 

For 𝐭 > 𝟎 the switch is closed 

Now the voltage source is 

introduced in the circuit. 

Apply KVL to the circuit 

V

s
= RI(s) +

1

Cs
I(s) 

               V = I(s) (Rs +
1

C
) 

I(s) =
V

Rs +
1
C

 

I(s) =
V

R(s +
1

RC
)
 



Applying Inverse Laplace transform for the above equation we get 

i(t) =
V

R
e−

1
RC

t
 

 

 

VR(t) = i(t) ∗ R 

VR(t) =
V

R
e−

1
RC

t ∗ R 

 

 

 

VC(t) = V − VR(t) 

VC(t) = V − Ve−
1

RC
t
 

 

 

 

 

 

 

 

 

 

 

2.6.3 Transient Response of series RLC circuit for DC excitation 

Consider series RLC circuit shown in Fig.. Consider that switch closed at 

t=0 and before that switch is open for a long time. 

 

𝑖(𝑡) =
𝑉

𝑅
e−

1
𝑅𝐶

𝑡
 

 

𝑉𝑅(𝑡) = 𝑉e−
1

𝑅𝐶
𝑡
 

 

𝑉𝐶(𝑡) = 𝑉 − 𝑉𝑒−
t

RC  
 



Initial condition 

At t = 0−, Switch is open! 

i(0−) = I0 = 0 

And also we know that inductor does not allow sudden change in current 

through it. 

i.e i(0+) = i(0−) = I0 = 0 

Before switch is closed at t = 0−, there is no current through the circuit 

and capacitor is also uncharged. 

Current through inductor and voltage across capacitor does not change 

instantaneously. 

VC(0+) = VC(0−) = V0 = 0 

For 𝐭 > 𝟎 the switch is closed 

Apply KVL to the circuit 

Ri(t) + L
di(t)

dt
+

1

C
∫ i(t)dt

t

0

= V 

Taking Laplace transform to the 

above equation 

RI(s) + LsI(s) +
1

Cs
I(s) =

V

s
 

I(s) (R + Ls +
1

Cs
) =

V

s
 

I(s) =
V

s (R + Ls +
1

Cs)
 

I(s) =
VC

(RCs + LCs2 + 1)
 

I(s) =
VC

LC (s2 +
R
L s +

1
LC)

 

I(s) =
V

L(s2+
R

L
s+

1

LC
)
     (4.20) 

 

 

 

 

𝐼(𝑠) =
V

𝐿 (𝑠2 +
𝑅
𝐿 𝑠 +

1
LC)

 

 



By taking partial fractions we get equation in the form of 

I(s) = [
A1

(s + m1)
+

A2

(s + m2)
] 

Then applying inverse Laplace transform to above equation we get 

i(t) = A1e−m1t + A2e−m2t 

 

 

Here m1 and m2 are Roots of equation s2 +
R

L
s +

1

LC
= 0 

m1 =
−

R
L + √(

R
L)

2

−
4

LC
2

 

m2 =
−

R
L − √(

R
L)

2

−
4

LC
2

 

m1,2 = −
R

2L
±

1

2L
√R2 −

4L

C
 

Case (i) 

𝐑𝟐 >
𝟒𝐋

𝐂
(Discriminant is positive) (Over damped) 

The roots m1, m2 are real and different 

Case (ii) 

𝐑𝟐 =
𝟒𝐋

𝐂
(Discriminant is Zero) (Critically damped) 

The roots m1, m2 are real and equal. 

Case (iii) 

𝐑𝟐 <
𝟒𝐋

𝐂
(Discriminant is negative) (Under damped) 

The roots m1, m2 are Complex conjugates. 

 

 

 

 

 

𝑖(𝑡) = A1e−m1t + A2e−m2t 

 



UNIT - V 

Transient Analysis for A.C Excitation 

 

Objectives:   

 To introduce the concept of Transients in electrical circuits. 

 To study the transient behavior of RL, RC & RLC circuits for AC excitation. 

Syllabus:   

Transient response of series R-L, R-C and R-L-C circuits for sinusoidal excitation- 

Initial Conditions-Solution method using differential equation approach and 

Laplace transform method 

Outcomes: 

On completion the student should be able to:  

 Analyze the transient behavior of first order and second order circuits for 

AC excitations using differential equation approach & Laplace transform 

approach. 

 Obtain the transformed networks and find the response using inverse 

Laplace transforms. 

 

5.1 Introduction to Transients 

Transient analysis (or just transients) of electrical circuits is as important 

as steady-state analysis. When transients occur, the currents and voltages in 

some parts of the circuit may many times exceed those that exist in normal 

behavior and may destroy the circuit equipment in its proper operation. We may 

distinguish the transient behavior of an electrical circuit from its steady-state, in 

that during the transients all the quantities, such as currents, voltages, power 

and energy, are changed in time, while in steady-state they remain invariant, i.e. 

constant (in d.c operation) or periodical (in a.c operation) having constant 

amplitudes and phase angles. 

The cause of transients  

 change in circuit parameters and/or in circuit configurations, which 

usually occurs as a result of switching (commutation),  

 short, and/or open circuiting,  



 Change in the operation of sources etc.  

The transient processes are attained by the interchange of energy, which is 

usually stored in the magnetic field of inductances or/and the electrical field of 

capacitances. Any change in energy cannot be abrupt otherwise it will result in 

infinite power (as the power is a derivative of energy, p=dw/dt), which is in 

contrast to physical reality. All transient changes, which are also called transient 

responses (or just responses), vanish and, after their disappearance, a new 

steady-state operation is established. In this respect, we may say that the 

transient describes the circuit behavior between two steady states: an old one, 

which was prior to changes, and a new one, which arises after the changes. 

A few methods of transient analysis are known: the classical method, The 

Cauchy-Heaviside (C-H) operational method, the Fourier transformation method 

and the Laplace transformation method.  

Comparing the classical method and the laplace transformation method it 

should be noted that the latter requires more knowledge of mathematics and is 

less related to the physical matter of transient behavior of electric circuits than 

the former. 

Classical method of transient analysis is based on the determination of 

differential equations and splitting the solution into two components: natural and 

forced responses. The classical method is fairly complicated mathematically, but 

is simple in engineering practice.  

 

5.2 Natural and Forced Responses: 

Solving differential equations by the classical method, complete solution of 

any linear differential equation as composed of two parts: the complementary 

solution (or natural response) and the particular solution (or forced response). To 

understand these principles, let us consider a first order differential equation, 

    
dv

dt
+ P(t)v = Q(t)     (4.1) 

Here Q(t) is identified as a forcing function, which is generally a function of 

time (or constant, if a d.c. source is applied) and P(t), is also generally a function 

of time, represents the circuit parameters. In our study, however, it will be a 

constant quantity, since the value of circuit elements does not change during the 



transients (indeed, the circuit parameters do change during the transients, but we 

may neglect this change as in many cases it is not significant). 

    v = e−Pt ∫ QePtdt + 𝐴e−Pt    (4.2) 

General solution can be written as 

v = vPI + vCF 

vPI = Particular integral = e−Pt ∫ QePtdt 

vCF = Complementary Function = 𝐴e−Pt 

In general vPI may be written as a Steady state value, designated asVss. Remaining 

part  is called Transient portion of solution Vt. 

V = Vss + Vt 

VPI = Vss = Source response =  Steady state response = Forced response 

VCF = Vt = Source free response =  Transient response = Natural response 

Complete solution is composed of two parts. The first one, which is 

dependent on the forcing function Q, is the forced response (it is also called the 

steady state response or the particular solution or the particular integral). The 

second one, which does not depend on the forcing function, but only on the 

circuit parameters P (the types of elements, their values, interconnections, etc) 

and on the initial conditions A, i.e., on the ‘‘nature’’ of the circuit, is the natural 

response. It is also called the solution of the homogeneous equation, which does 

not include the source function and has anything but zero on its right side. 

Following this rule, we will solve differential equations by finding natural and 

forced responses separately and combining them for a complete solution. 



 

 

5.3 Transient response of series RL, RC, RLC circuit for AC 

excitation 

5.3.1 Transient Response of series RL circuit for AC excitation 

         

                                                     V(t) = Vmsin(ωt + θ)  

 

Consider series RL circuit shown in figure.  

Consider that switch closed at t=0  and before that switch is open for a long time. 

Initial condition 

At t = 0−, Switch is open 

i(0−) = I0 = 0 



And also we know that inductor does not allow sudden change in current 

through it. 

i.e i(0+) = i(0−) = I0 = 0 

For 𝐭 > 𝟎 the switch is closed 

Apply KVL to the circuit  

    Ri(t) + L
di(t)

dt
= Vm sin(ωt + θ)   (5.1) 

Rearranging 

[D +
R

L
] i =

Vm

L
sin(ωt + θ) 

The complementary function of the above D.E is 

ic = Ke−
Rt
L  

This is the transient part of the solution. The steady state solution of equation 5.1 

can be obtained by assuming particular integral as  

𝑖𝑝(𝑡) = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡 

Substituting this solution in eq 5.1 at θ = 0 

𝑅𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝑅𝐵𝑠𝑖𝑛𝜔𝑡 + 𝐿(−𝜔𝐴𝑠𝑖𝑛𝜔𝑡 + 𝜔𝐵𝑐𝑜𝑠𝜔𝑡) = Vm sin ωt    

Comparing similar terms 

𝑅𝐴 + 𝜔𝐿𝐵 = 0 

𝑅𝐵 − 𝜔𝐿𝐴 = Vm 

 

Solving for A and B 

𝐴 = −
𝜔𝐿𝑉𝑚

𝑅2+𝜔2𝐿2  and  𝐵 =
𝑉𝑚𝑅

𝑅2+𝜔2𝐿2 

𝑖𝑝(𝑡) = −
𝜔𝐿𝑉𝑚

𝑅2 + 𝜔2𝐿2
 𝑐𝑜𝑠𝜔𝑡 +

𝑉𝑚𝑅

𝑅2 + 𝜔2𝐿2
𝑠𝑖𝑛𝜔𝑡 

𝑖𝑝(𝑡) =
𝑉𝑚

𝑅2 + 𝜔2𝐿2
[𝑅𝑠𝑖𝑛𝜔𝑡 − 𝜔𝐿𝑐𝑜𝑠𝜔𝑡] =

𝑉𝑚

√𝑅2 + 𝜔2𝐿2
sin (𝜔𝑡 − 𝜙) 

 Where 𝑡𝑎𝑛𝜙 =
𝜔𝐿

𝑅
  



The complete solution is given by  

𝑖(𝑡) = 𝐾𝑒−
𝑅
𝐿

𝑡 +
𝑉𝑚

√𝑅2 + 𝜔2𝐿2
sin (𝜔𝑡 − 𝜙) 

K can be found from initial condition  i(0)=0 and finally the complete solution. 

5.3.2 Transient Response of series RC circuit for AC excitation 

 

                              

                                         V(t) = Vmsin(ωt + θ)       

Consider series RC circuit shown in Fig..  

Consider that switch closed at t=0 and before that switch is open for a long 

time. 

To find transient response of driven series RC circuit means to find 

expression for voltage across capacitor VC(t). 

 

 

 

Initial condition 

At t = 0−, Switch is open 

Before closing the switch active source is not presented in the circuit, so the 

initial voltage across capacitor is zero. 

VC(0−) = V0 = 0 

And also we know that Capacitor does not allow sudden change in voltage 

across it. 

i.e VC(0+) = VC(0−) = V0 = 0 

 

For 𝐭 > 𝟎 the switch is closed 

Now the voltage source is introduced in the circuit. 

 

Apply KVL to the circuit 



    Ri +
1

C
∫ i dt = Vmsin(ωt + θ)    

Differentiating w.r.t time  

𝑅
𝑑𝑖

𝑑𝑡
+

𝑖

𝐶
= 𝑉𝑚 sin(𝜔𝑡 + 𝜃) 

𝑑𝑖

𝑑𝑡
+

𝑖

𝑅𝐶
=

𝑉𝑚𝜔

𝑅
cos(𝜔𝑡 + 𝜃)          (5.2) 

The transient part of the solution is 

it = Ke−
t

RC 

This is the transient part of the solution. The steady state solution of equation 5.2 

can be obtained by assuming particular integral as  

𝑖𝑝(𝑡) = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡         

Substituting this solution in eq 5.2 at θ = 0 

𝑅(−𝜔𝐴𝑠𝑖𝑛𝜔𝑡 + 𝜔𝐵𝑐𝑜𝑠𝜔𝑡) +
1

𝐶
(𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡) =

𝜔Vm

𝑅
cos ωt    

 

Comparing similar terms 

−𝜔𝑅𝐴 +
𝐵

𝐶
= 0 

𝑅𝜔𝐵 +
𝐴

𝐶
=

𝜔Vm

𝑅
 

Solving for A and B and finally the complete solution is given by  

𝑖(𝑡) = 𝐾𝑒−
𝑡

𝑅𝐶 +
𝑉𝑚

√𝑅2+
1

(𝜔𝐶)2

sin (𝜔𝑡 + 𝜙)     (5.3) 

K can be found from initial condition. 

5.3.3 Transient Response of series RLC circuit for AC excitation 

 

     



V(t) = Vmsin(ωt + θ) 

Consider series RLC circuit shown in Fig.. Consider that switch closed at t=0 and 

before that switch is open for a long time. 

 

Initial condition 

At t = 0−, Switch is open 

i(0−) = I0 = 0 

And also we know that inductor does not allow sudden change in current 

through it. 

Current through inductor and voltage across capacitor does not change 

instantaneously. 

Before switch is closed at t = 0−, there is no current through the circuit and 

capacitor is also uncharged. 

i(0+) = i(0−) = I0 = 0 

VC(0+) = VC(0−) = V0 = 0 

 

For 𝐭 > 𝟎 the switch is closed 

Apply KVL to the circuit 

    Ri + L
di

dt
+

1

C
∫ i dt

t

0
= Vmsin(ωt + θ)    (5.4) 

 This is an integro differential equation, differentiating on both sides to get total 

equation in differential equation. 

L
d2i

dt2
+ R

di

dt
+

i

C
= ωVmcos(ωt + θ) 

d2i

dt2
+

R

L

di

dt
+

i

LC
=

ωVm

L
cos(ωt + θ) 

Replace 
d2

dt2 with D2 and 
d

dt
 with D we get characteristic equation or auxiliary 

equation 

[D2 +
R

L
D +

1

LC
] i = 0 

The Transient solution 

The Transient solution of this characteristic equation of the form 

    i(t) = Aem1t + Bem2t     (5.5) 



Where, A and B are constants and m1, m2 are roots of the characteristic equation. 

The response of the circuit depends upon the nature of the roots of the 

characteristic equation. 

The roots are, 

m1,2 =
−

R
L ± √(

R
L)

2

−
4

LC
2

 

                     = −
R

2L
± √(

R

2L
)

2

− (
1

LC
)

2

 

S.No Condition Nature of the roots 

1 

R2 −
4L

C
> 0  

or  

R2 >
4L

C
 

Real and different roots 

2 

R2 −
4L

C
= 0  

or  

R2 =
4L

C
 

Real and equal roots 

3 

R2 −
4L

C
< 0  

or  

R2 <
4L

C
 

Complex conjugates roots 

 

m1,2 = −
R

2L
± √(

R

2L
)

2

− (
1

LC
)

2

 

m1,2 = −
R

2L
±

1

2L
√R2 −

4L

C
 

Let 



α = −
R

2L
 , β =

1

2L
√

4L

C
− R2 

 

S.No Nature of the roots Transient part of solution 

1 Real and different roots it = Ae−m1t + Be−m2t 

2 Real and equal roots it = (A + Bt)e−mt 

3 Complex conjugates roots 

it = e−αt[Mcosβt + Nsinβt] 

Or 

it = e−αt[Acosβt + Bsinβt] 

The Steady state solution 

The steady state part of solution is given by 

is =
Vm

Z
[sin(ωt ± ϕ)] 

Where 𝑡𝑎𝑛 𝜙 =
𝜔𝐿−

1

𝜔𝐶

𝑅
 

Note: The steady state current in the network lags by an voltage by an angle if 

XL > XC and leads the voltage XC > XL. 

The total solution  

i(t) = is + it 

  i(t) =
Vm

Z
[sin(ωt ± ϕ)] + Ae−m1t + Be−m2t   (5.6) 

Calculation of constants A and B 

Constants A and B are calculated using initial conditions 

(i) At t=0, i(0+) = i(0−) = I0 = 0 

(ii) At t=0, VC(0+) = VC(0−) = V0 = 0  i.e 
1

C
∫ i(t)dt

t

0
= 0 

    
di

dt
=

Vm

L
sin(θ) 

 

 

 

 

 



Assignment-Cum-Tutorial Questions 

SECTION-A 

  

1. If an RL circuit having angle ψ is switched in when the applied sinusoidal 

voltage wave is passing through an angle θ, there will be no switching transient 

if  

a) ψ − θ = 0 b) ψ − θ = 90 c) ψ + θ = 0  d) ψ + θ = 90 

   

2. A two terminal black box contains one of the RLC elements. The black box is 

connected  to a 220 volts ac supply. The current through the source is I. 

When a capacitance of 0.1 F  is inserted in series between the source and 

the box, the current through the source is 2I.  The element is  

    a) a resistance    b) an inductance 

  c) a capacitance of 0.5 F  d) not identifiable on the basis of the given data 

 

3.  A 10 Ω resistor, a 1 H inductor and 1 µF capacitor are connected in parallel. The 

combination is    driven by a unit step current. Under the steady state condition, 

the source current flows through. 

      a) the Resistor   b) the Capacitor  c) the inductor  d) All the three elements  

 

4. If the Laplace transform of the voltage across a capacitor of value of ½ F is 

     The value of the current through the capacitor at t = 0+ is 

 
    

1

1
23 




SSS

S
sV  

 
a) 0 A b) 2 A (c) (1/2) A (d) 1 A 

 

 

5. A ramp voltage, v(t) = 100 t volts, is applied to an RC differentiating circuit with 

R = 5kΩ and C = 4 μF. The maximum output voltage is.........................



SECTION-B 

 

 

1. A series R-L circuit has R=20 ohms and L=8 H. The circuit is connected 

across a AC voltage source of 120 V at t=0. Calculate the time at which the 

voltage drops across R and L are the same. 
 

2. Find the current in the circuit shown in fig. for t>0. At t=0- the network was 

unenergized. 

                                      
 

3. In the Figure , determine complete solution for current, when switch K is 

closed at t = 0 for applied voltage 𝑣 (𝑡) =  400 𝑐𝑜𝑠 (500𝑡 + 𝜋/4). Derive the 

expression for the current 
  

           
 

4. Derive mathematical expression for the transient response of series R-L 

circuit for an excitation of V Cos( ωt +φ). 

5. Derive mathematical expression for the transient response of series R-C 

circuit for an excitation of V Cos( ωt +φ). 

6. Derive mathematical expression for the transient response of series R-L-C 

circuit for an excitation of V Cos( ωt +φ). 

      

 



     SECTION-C 

1. A unit step voltage is applied at t = 0 to a series RL circuit with zero initial 

conditions. 

    a) It is possible for the current to be oscillatory.     

    b) The voltage across the resistor at t = 0+ is zero. 

    c) The energy stored in the inductor in the steady state is zero. 

    d) The resistor current eventually falls to zero 

2.  The time-domain behavior of an RL circuit is represented by   

   
(1 sin( )) ( )

R
t

L

o

di
L Ri V Be t u t

dt

 
 
    .  

For an initial current of i(0)= Vo/R What is the steady state value of the 

current. 

3. In the circuit shown, the switch SW is thrown from position A to position B 

at time t = 0. What is the energy (in µJ) taken from the 3 volts source to charge 

the 0.1µF capacitor from 0 to 3 volts.        

  

 

4. In the figure, the switch was closed for a long time before opening at t = 0.  

     The voltage Vx at t = 0+ is 

 

 

   

 



    

5. A square pulse of 3 volts amplitude is applied to C-R circuit shown in the 

figure. The capacitor is initially uncharged. The output voltage V2 at time t = 2 

sec is 

          

6. For the circuit of figure, IL(0)=2 A and VC(0)=5V. Sketch V(t) for t >0 

                                                      

  

7. The circuit of Figure 1.26 a known as a Multiple Feed Back (MFB) active low-

pass filter. For this circuit, the initial conditions are Vc1=Vc2=0. Compute and 

sketch for . 



                    



UNIT - VI 

Two port Networks 

Objectives:   

 To study the relationship between the input and output voltages and 

currents and define different sets of two port parameters. 

 To study the relationship between different two port networks and 

interconnection of two port networks. 

 

Syllabus:   

Introduction to Two port networks- Z, Y, ABCD and hybrid parameters and their 

relations. Cascaded networks. 

Outcomes: 

On completion, the student should be able to:  

 Determine Z, Y, ABCD & h parameters for two port networks. 

 Derive the relationship between different two port parameters. 

 Interconnect different two port networks and obtain the relation between the 

input and output quantities of the combined two-port network. 

 

6.1 Introduction: 

 A two-port network has two pairs of terminals, one pair at the input known as 

input port and one pair at the output known as output port as shown in figure: 6.1. 

There are four variables V1, V2, I1and I2  associated with a two port network. Two of 

these variables can be expressed in terms of the other two variables. Thus, there 

will be two dependent variables and two independent variables. The number of 

possible combinations generated by four variables taken two at a time is 4𝐶2, i.e., 

six. There are six possible sets of equations describing a two-port network. 

 

Figure: 6.1 Two-port network 



6.2 Two-Port Parameters: 

Parameter 
Variables 

Equation 
Express In terms of 

Open-Circuit 

Impedance 

 
 

 

V1,V2 
I1,I2 

V1 = Z11I1 + Z12I2 

V2 = Z21I1 + Z22I2 

 

Short-Circuit 

Admittance 
I1,I2 V1,V2 

I1 = Y11V1 + Y12V2 

I2 = Y21V1 + Y22V2 

Transmission V1,I1 V2,I2 

V1 = A V2 − B I2 

          I1 = C V2 −D I2 

 

Inverse 

Transmission 
V2,I2 V1,I1 

  V2 = A′V1- B′I1 

I2 = C′V1- D′I1 

 

Hybrid 

 
V1,I2 I1,V2 

V1 = h11I1 + h12V2 

I2 = h21I1 + h22V2 

 

Inverse 

Hybrid 
I1,V2 V1,I2 

I1 = g11V1 + g12I2 

V2 = g21V1 + g22I2 

 

6.3 Open-Circuit Impedance Parameters (Z Parameters)  

The Z parameters of a two-port network may be defined by expressing two-port 

voltages V1 and V2in terms of two-port currents I1 andI2. 

  (V1, V2)= 𝑓(I1, I2) 

 

V1 = Z11I1 + Z12I2 

V2 = Z21I1 + Z22I2 

 

In matrix form, we can write         [
V1

V2
] = [

Z11 Z12

Z21 Z22
] [

I1

I2
] 

                                                      [V] =[Z][I] 



The individual Z parameters for a given network can be defined by setting each of 

the port currents equal to zero. 

Case 1: When the output port is open-circuited, i.e., I2 =0 

     𝑍11 =
V1

I1
I2⁄ = 0 

Where 𝑍11 is the driving-point impedance with the output port open-circuited. It is 

also called open-circuit input impedance. 

Similarly,    𝑍21 =
V2

I1
I2⁄ = 0 

Where 𝑍21 is the transfer impedance with the output port open-circuited. It is also 

called open-circuit forward transfer impedance. 

Case 2: When the input port is open-circuited, i.e., I1 =0 

     𝑍12 =
V1

I2
I1⁄ = 0 

Where 𝑍12 is the transfer impedance with the input port open-circuited. It is also 

called open-circuit reverse transfer impedance. 

Similarly,     𝑍22 =
V2

I2
I1⁄ = 0 

Where 𝑍22 is the open-circuit driving-point impedance with the input port open-

circuited. It is also called open-circuit output impedance. 

 As these impedance parameters are measured with either the input or 

output port open-circuited, these are called open-circuit impedance parameters. 

 The equivalent circuit of the two-port network in terms of Z parameters is 

shown in figure: 6.3 

                                           

                         Figure: 6.3 Equivalent circuit of the two-port  

            network in terms of Z parameter. 



Condition for Reciprocity: 

 If 𝑍12= 𝑍21 ,the network is said to be reciprocal network. 

Condition for Symmetry: 

 If 𝑍11=𝑍22, the network is said to be symmetrical network. 

 

6.4 Short-Circuit Admittance Parameters (Y Parameters) 

 
The Y parameters of a two-port network may be defined by expressing two-port 

currents I1 and I2 in terms of the two-port voltagesV1and V2. 

 

                                   (I1, I2) = f(V1, V2) 
I1 = Y11V1 + Y12V2 

I2 = Y21V1 + Y22V2 
 

In matrix form, we can write         [
I1

I2
] = [

Y11 Y12

Y21 Y22
] [

V1

V2
] 

                                                                               [I] = [Y][V] 
 
The individual Y parameters for a given network can be defined by setting each of 

the port voltages equal to zero. 

Case 1: When the output port is short-circuited, i.e., V2 =0 

    Y11 =
I1

V1
 V2⁄ = 0 

     Where 𝑌11 is the driving-point admittance with the output port short-circuited. It 

is also called short-circuit input admittance. 

Similarly, Y21 =
I2

V1
 V2⁄ = 0 

Where 𝑌21 is the transfer admittance with the output port short-circuited. It is also 

called short-circuit forward transfer admittance. 

Case 2: When the input port is short-circuited, i.e., V1 =0 

Y12 =
I1

V2
 V1⁄ = 0 

Where 𝑌12 is the transfer admittance with the input port short-circuited. It is also 

called short-circuit reverse transfer admittance. 

Similarly,Y22 =
I2

V2
 V1⁄ = 0 



Where 𝑌22 is the short-circuit driving-point admittance with the input port short-

circuited. It is also called short-circuit output admittance. 

 As these admittance parameters are measured with either input or output 

port short-circuited, these are called short-circuit admittance parameters. 

 The equivalent circuit of the two-port network in terms of Y parameters is 

shown in figure: 6.4 

    

                   Figure: 6.4 Equivalent circuit of the two-port  

                                                   network in terms of Y-parameters 
 

Condition for Reciprocity: 

 If  Y12= Y21 ,the network is said to be reciprocal network. 

Condition for Symmetry: 

 If Y11= Y22, the network is said to be symmetrical network. 

 
6.5 Transmission Parameters (ABCD Parameters) 

The transmission parameters or chain parameters or ABCD parameters serve to 

relate the voltage and current at the input port to voltage and current at the output 

port.  

 

In equation form, 

                           (V1, I1) = f(V2, −I2) 
                                 V1 = A V2 − B I2 

                                                I1 = C V2 −D I2 
 

Here, the negative sign is used with I2 and not for parameters B and D. The reason 

the current I2 carries a negative sign is that in transmission field, the output 

current is assumed to be coming out of the output port instead of going into the 

port. 



         
                          Figure: 6.5 Terminal variables used 
                                      to define ABCD parameters 

  

In matrix form, we can write         [
V1

I1
] = [

A B
C D

] [
V2

−I2
] 

  Where matrix [
A B
C D

] is called transmission matrix. 

 
For a given network, these parameters are determined as follows: 

 

Case 1   When the output port is open-circuited, i.e., I2=0 

   A =
V1

V2
 I2⁄ = 0 

Where A is the reverse voltage gain with the output port open-circuited. 

Similarly,   C =
I1

V2
 I2⁄ = 0 

  
Where C is the transfer admittance with the output port open-circuited. 

Case 2 When the output port is short-circuited, i.e., 𝑉2=0 

  B = −
V1

I2
 V2⁄ = 0 

Where B is the transfer impedance with the output port short-circuited. 

Similarly,                       D= −
I1

I2
 V2⁄ = 0 

Where D is the reverse current gain with the output port short-circuited. 

 

Condition for Reciprocity: 

 If AD-BC=1, the network is said to be reciprocal network. 

Condition for Symmetry: 
 If A=D, the network is said to be symmetrical network. 



 
6.6 Hybrid Parameters (h Parameters) 

 

The hybrid parameters of a two-port network may be defined by expressing the 

voltage of input port V1 and current of output port I2 in terms of current of input 

port  I1 and voltage of output port V2. 

 

                                                    (V1, I2) = f (I1,V2 )   

 

V1 = h11I1 + h12V2 

I2 = h21I1 + h22V2 

 

In matrix form, we can write         [
V1

I2
] = [

h11 h12

h21 h22
] [

I1

V2
] 

These parameters are particularly important in transistor circuit analysis. 

 

Case 1 When the output port is short-circuited, i.e., 𝑉2=0 

 

h11 =

V1

I1
V2 = 0

⁄
 

Where ℎ11 is called as short-circuit input impedance. 

Similarly,   h21 =

I2

I1

V2 = 0
⁄  

Where ℎ21 is called as short-circuit forward current gain. 

 

Case 2    When the input port is open-circuited, i.e.,𝐼1=0 

h12 =

V1

V2
I1 = 0

⁄
 

Where ℎ12 is called as open circuit reverse voltage gain. 

Similarly,   h22 =

I2

V2

I1 = 0
⁄  

Where ℎ22 is called as open-circuit output admittance. 

Since h parameters represent dimensionally impedance, admittance, voltage gain 

and current gain, these are called hybrid parameters. 

 

The equivalent circuit of the two-port network in terms of hybrid parameters is 

shown in figure: 6.6 



 

  
 

      Figure: 6.6 Equivalent circuit of the two-port 

               network in terms of h-parameters 

 

Condition for Reciprocity: 

 If h21 = −h12, the network is said to be reciprocal network. 

Condition for Symmetry: 

 If h11h22−h12h21 = 1 (∆h = 1), the network is said to be symmetrical network. 
  

6.7 Inter-Relationships between the Parameters: 

 

 When it is required to find out two or more parameters of a particular 

network then finding each parameter will be tedious. But if we find a particular 

parameter then the other parameters can be found if the inter-relationship between 

them is known. 

 

1. Z-parameters in terms of other parameters: 

 
a)    Z-parameters in terms of Y-parameters: 

 

           We known that               

I1 = Y11V1 + Y12V2 
I2 = Y21V1 + Y22V2 

                                    By Cramer’s rule, V1 =
|
I1 Y12
I2 Y22

|

|
Y11 Y12
Y21 Y22

|
 = 

Y22I1−Y12I2

Y11Y22−Y12Y21
=

Y22

ΔY
I1 −

Y12

ΔY
I2 

                     Where                                ΔY = Y11Y22 − Y12Y21 

          Comparing with                    V1 = Z11I1 + Z12I2 

Z11 =
Y22

ΔY
 



Z12 = −
Y12

ΔY
 

                                       Also,   V2 =
|
Y11 I1
Y21 I2

|

ΔY
 

                        =
Y11

ΔY
I2 −

Y21

ΔY
I1 

Comparing with                    V2 = Z21I1 + Z22I2 

Z22 =
Y11

ΔY
 

Z21 = −
Y21

ΔY
 

 

b) Z-parameters in terms of ABCD parameters: 

 

We know that                            V1 = A V2 − B I2 

   I1 = C V2 −D I2 
Rewriting the second equation, 

 

V2 =
1

C
I1 +

D

C
I2 

Comparing with                       V2 = Z21I1 + Z22I2 

Z21 =
1

C
 

Z22 =
D

C
 

Also, V1 = A [
1

C
I1 +

D

C
I2] − BI2 

=
A

C
I1 + [

AD

C
− B] I2 

=
A

C
I1 + [

AD − BC

C
] I2 

 

 

Comparing with                                V1 = Z11I1 + Z12I2 

Z11 =
A

C
 



Z12 =
AD − BC

C
 

 

c) Z-parameters in terms of A’B’C’D’ parameters: 

                  We know that        V2 = A′V1- B′I1 

                       I2 = C′V1- D′I1 

 
            Rewriting the second equation,  

V1 =
D′

C′
I1 +

1

C′
I2 

             Comparing with                     V1 = Z11I1 + Z12I2 

𝑍11 =
D′

C′
 

𝑍12 =
1

C′
 

Also,   V2 =  A′ [
D′

C′
I1 +

1

C′
I2] − B ′I1 =  [

A′D′−B′C′

C′
] I1 +

A′

C′
I2 

Comparing with                                 V2 = Z21I1 + Z22I2 

Z21 = [
A′D′ − B ′C′

C′
] 

𝑍22 =
A′

C′
 

d) Z-parameters in terms of Hybrid parameters: 

We know that  

V1 = h11I1 + h12V2 
                      I2 = h21I1 + h22V2 

Rewriting second equation, 

V2 = −
h21

h22
I1 +

1

h22
I2 

 

 

Comparing with                                  V2 = Z21I1 + Z22I2 

 

Z21 = −
h21

h22
 



Z22 =
1

h22
 

 

Also,                                                 V1 = h11I1 + h12 [−
h21

h22
I1 +

1

h22
I2] 

 

= h11I1 +
h12

h22
I2 −

h12h21

h22
I1 

                                                

= [
h11h22 − h12h21

h22
] I1 +

h12

h22
I2 

 
 

Comparing with                                V1 = Z11I1 + Z12I2 

          Z11 =
h11h22 − h12h21

h22
=

∆h

h22
 

Z12 =
h12

h22
 

2. Y-parameters in terms of other parameters: 

 

a) Y-parameters in terms of Z-parameters: 

 

We known that                             V1 = Z11I1 + Z12I2 

V2 = Z21I1 + Z22I2 

By Cramer’s rule,  

I1 =
|
V1 Z12

V2 Z22
|

|
Z11 Z12

Z21 Z22
|
 

 

             =
Z22V1 − Z12V2

Z11Z22 − Z12Z21
 

 

           =
Z22

∆Z
V1 −

Z12

∆Z
V2 

                  Where                                       ∆Z = Z11Z22 − Z12Z21 

 

            Comparing with                              I1 = Y11V1 + Y12V2 

 



Y11 =
Z22

∆Z
 

 

  Y12 = −
Z12

∆Z
 

 

                                                Also,   I2 =
|
Z11 V1
Z21 V2

|

∆Z
 

        =
Z11V2 − Z12V1

∆Z
 

        = −
Z21

∆Z
V1 +

Z11

∆Z
V2 

         Comparing with                       I2 = Y21V1 + Y22V2 

  Y21 = −
Z21

∆Z
 

Y22 =
Z11

∆Z
 

 

b) Y-parameters in terms of ABCD parameters: 
 

 

We know that                           V1 = AV2 − BI2 

 

I1 = CV2 − DI2 
 

Rewriting the first equation,   I2 = −
1

B
V1 +

A

B
V2 

 

Comparing with                             I2 = Y21V1 + Y22V2 

  Y21 = −
1

B
 

Y22 =
A

B
 

 

                             Also,   I1 = CV2 − D [−
1

B
V1 +

A

B
V2] 

 

=
D

B
V1 + [

BC − AD

B
] V2 

 

Comparing with                    I1 = Y11V1 + Y12V2 

 

Y11 =
D

B
 



𝑌12 =
BC − AD

B
 

 

c) Y-parameters in terms of A’B’C’D’ parameters: 
 

                  We know that        V2 = A' V1-B' I1 

                      I2 = C' V1- D' I1 

 

Rewriting the first equation, I1 =
A′

B′
V1 −

1

B′
V2 

 

Comparing with                 I1 = Y11V1 + Y12V2 

 

Y11 =
A′

B′
 

Y12 = −
1

B′
 

Also,   I2 = C′V1 − D′ [
A′

B′
V1 −

1

B′
V2] 

 

= − [
A′D′ − B ′C′

B ′
] V1 +

D′

B ′
V2 

 

Comparing with                         I2 = Y21V1 + Y22V2 

 

𝑌21 = −
A′D′ − B ′C′

B ′
 

Y22 =
D′

B′
 

 
d) Y-parameters in terms of Hybrid parameters: 

 

We know that, 

V1 = h11I1 + h12V2 

I2 = h21I1 + h22V2 
 

Rewriting the first equation,   

I1 =
1

h11
V1 −

h12

h11
V2 

 

     Comparing with                  I1 = Y11V1 + Y12V2 

Y11 =
1

h11
 

Y12 = −
h12

h11
 



 

Also,   I2 = h21 [
1

h11
V1 −

h12

h11
V2] + h22V2 

 

=
h21

h11
V1 + [

h11h22 − h12h21

h11
] V2 

 

 

Comparing with               I2 = Y21V1 + Y22V2 
 

Y21 =
h21

h11
 

 

                      Y22 =
h11h22 − h12h21

h11
 

 

3. ABCD parameters in terms of other parameters: 

 
a) ABCD parameters in terms of Z-parameters: 

 

We know that 

V1 = Z11I1 + Z12I2 

V2 = Z21I1 + Z22I2 

Rewriting the second equation, 

I1 =
1

Z21
V2 −

Z22

Z21
I2 

 

Comparing with,   I1 = CV2 − DI2 

C =
1

Z21
 

 

D =
Z22

Z21
 

 

Also,   V1 = Z11 [
1

Z21
V2 −

Z22

Z21
I2] + Z12I2 

 

           =
Z11

Z21
V2 −

Z22Z11

Z21
I2 + Z12I2 

 

=
Z11

Z21
V2 − [

Z11Z22 − Z12Z21

Z21
] I2 

 

Comparing with,   V1 = AV2 − BI2 

 



A =
Z11

Z21
 

 

 

B =
Z11Z22 − Z12Z21

Z21
 

 
b) ABCD parameters in terms of Y-parameters: 

 

We know that  

I1 = Y11V1 + Y12V2 

I2 = Y21V1 + Y22V2 
 
Rewriting the second equation, 

V1 = −
Y22

Y21
V2 +

1

Y21
I2 

 

Comparing with                         V1 = AV2 − BI2 

 

A = −
Y22

Y21
 

B = −
1

Y21
 

 

                                        Also,   I1 = Y11 [−
Y22

Y21
V2 +

1

Y21
I2] + Y12V2 

 

                              = [
Y12Y21 − Y11Y22

Y21
] V2 +

Y11

Y21
I2 

 

Comparing with,            I1 = CV2 − DI2 

 

C = [
Y12Y21 − Y11Y22

Y21
] = −

∆Y

Y21
 

D = −
Y11

Y21
 

 

 

c) ABCD parameters in terms of hybrid parameters: 

 

We know that,                       V1 = h11I1 + h12V2 

I2 = h21I1 + h22V2 
 



Rewriting the second equation, I1 = −
h22

h21
V2 +

1

h21
I2 

 

Comparing with,   I1 = CV2 − DI2 

C = −
h22

h21
 

D = −
1

h21
 

 

Also,                              V1 = h11 [
1

h21
I2 −

h22

h21
V2] + h12V2 

 

               = [
h12h21 − h11h22

h21
] V2 +

h11

h21
I2 

 

Comparing with                  V1 = AV2 − BI2 
 

                   A =
h12h21 − h11h22

h21
 

B = −
h11

h21
 

 

4. Hybrid parameters in terms of other parameters: 

 

a) Hybrid parameters in terms of Z-parameters: 

 

We know that                              V1 = Z11I1 + Z12I2 

               V2 = Z21I1 + Z22I2 

 

Rewriting the second equation, I2 = −
Z21

Z22
I1 +

1

Z22
V2 

 

Comparing with                        I2 = h21I1 + h22V2 

h21 = −
Z21

Z22
 

h22 =
1

Z22
 

 

                       Also,   V1 = Z11I1 + Z12 [−
Z21

Z22
I1 +

1

Z22
V2] 

= [
Z11Z22 − Z12Z21

Z22
] I1 +

Z12

Z22
V2 

 



Comparing with               V1 = h11I1 + h12V2 

h11 =
Z11Z22 − Z12Z21

Z22
=

∆Z

Z22
 

h12 =
Z12

Z22
 

 

b) Hybrid parameters in terms of Y-parameters: 

 

We know that 

I1 = Y11V1 + Y12V2 
I2 = Y21V1 + Y22V2 

 

Rewriting the first equation, V1 =
1

Y11
I1 −

Y12

Y11
V2 

 

Comparing with                 V1 = h11I1 + h12V2 

h11 =
1

Y11
 

h12 = −
Y12

Y11
 

 

                        Also,   I2 = Y21 [
1

Y11
I1 −

Y12

Y11
V2] + Y22V2 

 

= [
Y11Y22 − Y12Y21

Y11
] V2 +

Y21

Y11
I1 

 

Comparing with             I2 = h21I1 + h22V2 

 

h22 =
Y11Y22 − Y12Y21

Y11
=

∆Y

Y11
 

h21 =
Y21

Y11
 

 

c) Hybrid parameters in terms of ABCD parameters: 

 

We know that                                 V1 = AV2 − BI2 

                                                                     I1 = CV2 − DI2 
 

Rewriting the second equation,   I2 = −
1

D
I1 +

C

D
V2 

 

Comparing with                            I2 = h21I1 + h22V2 

h21 = −
1

D
 



h22 =
C

D
 

 

                                 Also,   V1 = AV2 − B [−
1

D
I1 +

C

D
V2] 

 

             =
B

D
I1 + [

AD − BC

D
] V2 

 

Comparing with                      V1 = h11I1 + h12V2 

 

h11 =
B

D
 

 

                                              h12 =
AD−BC

D
=

∆T

D
 

 

Inter-relationship between parameters: 
 

 

 

6.8 Interconnection of two-port networks: 

             Interconnection of two-port networks, namely, cascade, parallel, series-

parallel and parallel-series are discussed below and the relation between the input 

and output quantities of the combined two-port networks is derived. 



6.8.1 Cascade Connection: 

 

Transmission Parameter Representation: 

 

             Figure: 6.8.1 shows two-port networks connected in cascade. In the 

cascade connection, the output port of the first network becomes the input port of 

the second network. Since it is assumed that input and output currents are positive 

when they enter the network, we have 

I1
′ = −I2 

 

                           
Figure: 6.8.1 Cascade Connection 

 

Let 𝐴1, 𝐵1, 𝐶1, 𝐷1 be the transmission parameters of the network 𝑁1 and 𝐴2, 𝐵2, 𝐶2, 𝐷2 be 

the transmission parameters of the network 𝑁2. 

 

For the network 𝑁1, 

 

                                               [
𝑉1

𝐼1
] = [

𝐴1𝐵1

𝐶1𝐷1
] [

𝑉2

−𝐼2
]__________ (i) 

 

For the network 𝑁2, 

[
𝑉1
′

𝐼1
′
] = [

𝐴2𝐵2

𝐶2𝐷2
] [

𝑉2
′

−𝐼2
′
] 

Since V1
′ = V2 and  I2

′ = −I2, we can write 

                                          [
𝑉2

−𝐼2
] = [

𝐴2𝐵2

𝐶2𝐷2
] [

𝑉2
′

−𝐼2
′
] _________ (ii) 

Combining equations (i) and (ii), 

[
𝑉1

𝐼1
] = [

𝐴1𝐵1

𝐶1𝐷1
] [

𝐴2𝐵2

𝐶2𝐷2
] [

𝑉2
′

−𝐼2
′
] = [

𝐴𝐵
𝐶𝐷

] [
𝑉2
′

−𝐼2
′
] 



 

                         Hence,   [
𝐴𝐵
𝐶𝐷

] = [
𝐴1𝐵1

𝐶1𝐷1
] [

𝐴2𝐵2

𝐶2𝐷2
]  __________ (iii) 

 

Equation (iii) shows that the resultant ABCD matrix of the cascade connection is the 

product of the individual ABCD matrices. 

 

6.8.2 Parallel Connection: 

 

            Figure: 6.8.2 shows two-port networks connected in parallel. In the parallel 

connection, the two networks have the same input voltages and the same output 

voltages. 

                        

Figure: 6.8.2 Parallel Connection 

Let 𝑌11
′ , 𝑌12

′ , 𝑌21
′ , 𝑌22

′   be the Y-parameters of the network 𝑁1 and 𝑌11
′′ , 𝑌12

′′ , 𝑌21
′′ , 𝑌22

′′  be the Y-

parameters of the network 𝑁2. 

For the network 𝑁1, [
𝐼1
′

𝐼2
′
] = [

𝑌11
′ 𝑌12

′

𝑌21
′ 𝑌22

′
] [

𝑉1

𝑉2
] 

 

For the network𝑁2, [
𝐼1
′′

𝐼2
′′
] = [

𝑌11
′′ 𝑌12

′′

𝑌21
′′ 𝑌22

′′
] [

𝑉1

𝑉2
] 

For the combined network, 𝐼1 = 𝐼1
′ + 𝐼1

′′ and 𝐼2 = 𝐼2
′ + 𝐼2

′′ 

                 Hence, [
𝐼1

𝐼2
] = [

𝐼1
′ + 𝐼1

′′

𝐼2
′ + 𝐼2

′′
] = [

𝑌11
′ + 𝑌11

′′ 𝑌12
′ + 𝑌12

′′

𝑌21
′ + 𝑌21

′′ 𝑌22
′ + 𝑌22

′′
] [

𝑉1

𝑉2
] = [

𝑌11𝑌12

𝑌21𝑌22
] [

𝑉1

𝑉2
] 



Thus, the resultant Y-parameter matrix for parallel connected networks is the sum 

of Y matrices of each individual two-port networks. 

6.8.3 Series Connection: 

                    Figure: 6.8.3 shows two-port networks connected in series. In a series 

connection, both the networks carry the same input current. Their output currents 

are also equal. 

                            

Figure: 6.8.3 Series Connection 

Let 𝑍11
′ , 𝑍12

′ , 𝑍21
′ , 𝑍22

′   be the Z-parameters of the network 𝑁1 and 𝑍11
′′ , 𝑍12

′′ , 𝑍21
′′ , 𝑍22

′′  be the 

Y-parameters of the network 𝑁2. 

For the network 𝑁1,                      [
𝑉1
′

𝑉2
′
] = [

𝑍11
′ 𝑍12

′

𝑍21
′ 𝑍22

′
] [

𝐼1

𝐼2
] 

For the network 𝑁2,                     [
𝑉1
′ ′

𝑉2
′′
] = [

𝑍11
′′ 𝑍12

′′

𝑍21
′′ 𝑍22

′′
] [

𝐼1

𝐼2
] 

For the combined network 𝑉1 = 𝑉1
′ + 𝑉1

′′ and 𝑉2 = 𝑉2
′ + 𝑉2

′′ 

               Hence, [
𝑉1

𝑉2
] = [

𝑉1
′ + 𝑉1

′′

𝑉2
′ + 𝑉2

′′
] = [

𝑍11
′ + 𝑍11

′′ 𝑍12
′ + 𝑍12

′′

𝑍21
′ + 𝑍21

′′ 𝑍22
′ + 𝑍22

′′
] [

𝐼1

𝐼2
] = [

𝑍11𝑍12

𝑍21𝑍22
] [

𝐼1

𝐼2
] 

Thus, the ersultant Z-parameters matrix for the series-connected networks is the 

sum of Z matrices of each individual two-port network. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assignment cum tutorial questions 

SECTION-A 

1. A voltage of 10V applied at port-1 results in I1=5A and V2=5V when port 2 is 

open circuited. The open circuit transfer impedance is____     

 a) 2Ω                  b) 1Ω                       c) 3Ω                         d) 4Ω 

 



2. For a two port network, Z11 and Z22 are equal and also Z12=Z21.Then the two 

port network is 

      a) Symmetric only   b) Reciprocal but not symmetrical 

      c) Symmetric and Reciprocal  d) Symmetrical but not reciprocal 

 

3. The parameter Y11 in terms of Z parameters is........... 

     a)
𝑍22

𝐷𝑧
  b)

–𝑍12

𝐷𝑧
        c)

𝑍11

𝐷𝑧
   d)

–𝑍21

𝐷𝑧
 

 

4. With port 1 short circuited, a voltage of 10V is applied at port 2 results in I2=4A 

and I1=-2A.The short circuit driving point admittance at port 2 is__ 

     a) -0.4   b)0.2  c)-0.2   d)0.4 

5. For a given two port network, the S/C parameters are Y11=10 ,Y12=Y21=2 

,Y22=5.The value of Z21 is___ 

    a)
10

23
Ω  b)

5

23
Ω  c)

−1

23
Ω   d)

1

23
Ω 

 

6. For a given two port network,Z11=10Ω;Z22=8Ω;Z12=Z21=3Ω.A resistance of 5Ω 

is connected at port 2.Then the driving point impedance at port 1 is__ 

     a)
121

3
Ω  b)7 Ω  c)

134

13
Ω   d)

108

13
Ω 

 

7. In a two port network, the parameters A=D=2 and B=3Ω.Then value of 

parameter C is_ 

    a) 2  b) 1 mho c) 
1

2
 mho d) 

1

3
 mho 

8. In a two port network, the expression for Z11 in terms of ABCD parameters is 

 a)
𝐷

𝐶
  b)

1

𝐶
  c)

𝐵

𝐶
   d)

𝐴

𝐶
 

9. For a two port symmetrical network, the relation in transmission parameters is 

    a) A= 
1

𝐶𝐷
  b) CA=BD c) A= 

1

𝐷
 d) A=D 



10. Two identical two port networks (having same port parameters) are connected 

in cascade. The parameters A of the combined network is 

 a) A+BC  b) A2+BC  c) A+ 
𝐵

𝐶
 d) 

𝐴

2
 

 

11. When port 1 of a two-port circuit is short-circuited, I1 = 4I2 and V2 = 0.25I2.                                  

 Which of the following is true? 

 (a) y11 = 4 (b) y12 = 16  (c) y21 = 16  (d) y22 = 0.25 

 

12.  A two-port is described by the following equations: 

  V1 = 50I1 + 10I2   V2 = 30I1 + 20I2 

which of the following is not true? 

 (a) z12 = 10  (b) y12 = -0.0143 (c) h12 = 0.5  (d) A = 50 

 

13.  If two-port is reciprocal, which of the following is not true? 

 (a) z21 = z12  (b) y21 = y12   (c) h21 = h12  (d) AD = BC + 1 

 

  

14. A passive 2 port network is in a steady-state compared to its input, the steady 

 stay output can never offer  

A. Better regulation. 

B. Higher voltage. 

C. Greater Power 

D. Lower impedance. 

  15. Which elements act as an independent variables in Y-parameters? 

 a. Current 

 b. Voltage 

 c. Both (a&b) 

 d. None of the above 



 16.  If the two ports are connected in cascade configuration, then which arithmetic  
        operation should be performed between the individual transmission parameter    

 in order to determine overall transmission parameters? 

 
            a. Addition         b. Subtraction          c. Multiplication            d. Division 

 

SECTION-B 

1. Determine the Z-parameters for the network shown in fig (a). 
  

 
 

                       Fig.(a)      Fig.(b) 

  

2. Obtain the y parameters for the circuit in Fig(b)  
  

3. The y-parameters of a two port network are y11=15 mho, y22=24 mho, 

y12=y21=6 mho. Determine ABCD parameters. 

 

4. Determine ABCD parameters of the network shown in fig. 

 

5. Determine the y parameters for the two-port shown in Fig.  

    

 
 

6. Find I1 and I2 in the circuit in Fig. 

        



 
 

7.  Find the y parameters for the circuit shown below: 

 
 

8. Obtain T-parameters for the circuit shown in the figure below 

                         

SECTION-C 

 

1. The open circuit impedance matrix of the two-port network shown in figure is: 
 

 

a) [
−2 1
−8 3

]  b) [
−2 −8
1 3

]  c) [
0 1
1 0

] d) [
−2 −1
−1 3

] 



 

2. Two two-port networks are connected in cascade. The combination is to 

represented as a single two-port networks. The parameters of the network are 
obtained by multiplying the individual:       

  
a) z-parameter matrix    b) h-parameter matrix 

c) y-parameter matrix    d) ABCD parameter matrix 

3. For a two-port network to be reciprocal      

a) 𝑧11 = 𝑧22  b) 𝑦21 = 𝑦12  c) ℎ12 = −ℎ21 d) AD-BC=0 

4. The condition that a z-port network is reciprocal, can be expressed in terms of its 
ABCD parameters as:   

      
a) AD-BC=1  b) AD-BC=0  c) AD-BC>1  d) AD-BC<1 

5. The short-circuit admittance matrix of a two-port network is:  

[
0 −1/2

1/2 0
] 

The two-port network is: 

a) Non-reciprocal and passive   b) Non-reciprocal and active 

c) Reciprocal and passive    d) Reciprocal and active 

6. A two-port network is shown in figure. The parameter h21 for this network can 

be given by:           

 

a) –1/2   b) +1/2   c) –3/2   d) +3/2 

 

7. The Z parameters Z11 and Z21 for the 2-port network in figure are:   



 

a) 𝑍11 = −
6

11
Ω      𝑍21 =

16

11
Ω  b) 𝑍11 =

6

11
Ω      𝑍21 =

4

11
Ω 

c) 𝑍11 =
6

11
Ω      𝑍21 = −

16

11
Ω  d) 𝑍11 =

4

11
Ω      𝑍21 =

4

11
Ω 

 

8. The admittance parameter Y12 in the two-port network in figure is:   

 

a) –0.2 mho  b) 0.1 mho  c) –0.05 mho  d) 0.05 mho 

 

 

9. The impedance parameters Z11 and Z12 of the two-port network in figure are: 
 

 

a) Z11 = 2.75 Ω and Z12 = 0.25 Ω b) Z11 = 3 Ω and Z12 = 0.5 Ω 

c) Z11 = 3 Ω and Z12 = 0.25 Ω  d) Z11 = 2.25 Ω and Z12 = 0.5 Ω 

 

 



10. For the lattice shown in figure, 𝑍𝑎 = 𝑗2Ω and 𝑍𝑏 = 2Ω. The values of the open  

     circuit impedance parameters 𝑍 = [
𝑧11 𝑧12

𝑧21 𝑧22
] are      

 

a) [
1 − 𝑗 1 + 𝑗
1 + 𝑗 1 + 𝑗

] b) [
1 − 𝑗 1 + 𝑗

−1 + 𝑗 1 − 𝑗
] c) [

1 + 𝑗 1 + 𝑗
1 − 𝑗 1 − 𝑗

] d) [
1 + 𝑗 −1 + 𝑗

−1 + 𝑗 1 + 𝑗
] 

 

11.     The h parameters of the circuit in figure are:      

     

 

 

11. The ABCD parameters of an ideal n:1 transformer shown in the figure are 

[
𝑛 0
0 𝑥

] 



                                       

 

a) n  b) 
1

𝑛
  c) 𝑛2  d) 

1

𝑛2 

 

12. In the two port network shown in the figure below, Z12and Z21and respectively 

 

 

a) reand βr0  b) 0 and -βr0  c) 0 and βr0 d) re and -βr0 

 

13. A two-port network is represented by ABCD parameters given by

  

 

 



15.A two-port network shown below is excited by external DC source. The voltage 

and the current are measured with voltmeters V1, V2and ammeters. A1, A2(all 

assumed to be ideal), as indicated        

              

 

 

Under following conditions, the readings obtained are: 

(1) S1 -open, S2 - closed A1 = 0,V1 = 4.5 V,V2 = 1.5 V,A2 = 1 A 

(2) S1 -open, S2 - closed A1 = 4 A,V1 = 6 V,V2 = 6 V,A2 = 0 

 

16. The z -parameter matrix for this network is 

 

a) [
1.5 1.5
4.5 1.5

]  b) [
1.5 4.5
1.5 4.5

]  c) [
1.5 4.5
1.5 1.5

]  d) [
4.5 1.5
1.5 4.5

] 

 

17. The h-parameter matrix for this network is 

a) [
−3 3
−1 0.67

]  b) [
−3 1
3 0.67

]  c) [
3 3
1 0.67

]  d) [
3 1

−3 −0.67
] 

 

18. For the two-port network shown below, the short-circuit admittance 

parameter matrix is     
 

 



 

 

19. With 10 V dc connected at port A in the linear nonreciprocal two-port network 

shown below, the following were observed : 

(i) 1 Ω connected at port B draws a current of 3A 

(ii) 2.5 Ω connected at port B draws a current of 2A 

 

19. With 10 V dc connected at port A, the current drawn by 7 Ω connected at port 

B is 
a) 3/7 A   b) 5/7 A  c) 1A  d) 9/7 A 

20. For the same network, with 6 V dc connected at port A, 1 Ω connected at port 

B draws 7/3 A. If 8 V dc is connected to port A, the open circuit voltage at port B 
is 
a) 6 V   b) 7 V   c) 8 V  d) 9 V 

 

21. In the h – parameter model of 2 – port network given in the figure shown,  



 

The value of h22 (in Siemens) is _____________ 

 

22. The 2 – port Admittance matrix of the circuit shown is given by____________  

 

 a) [
0.3 0.2
0.2 0.3

]  b) [
15 5
5 15

]  c) [
3.33 5

5 3.33
] d) [

0.3 0.4
0.4 0.3

] 

 

 

 

 

 


